
Building Information Modelling (BIM) Training

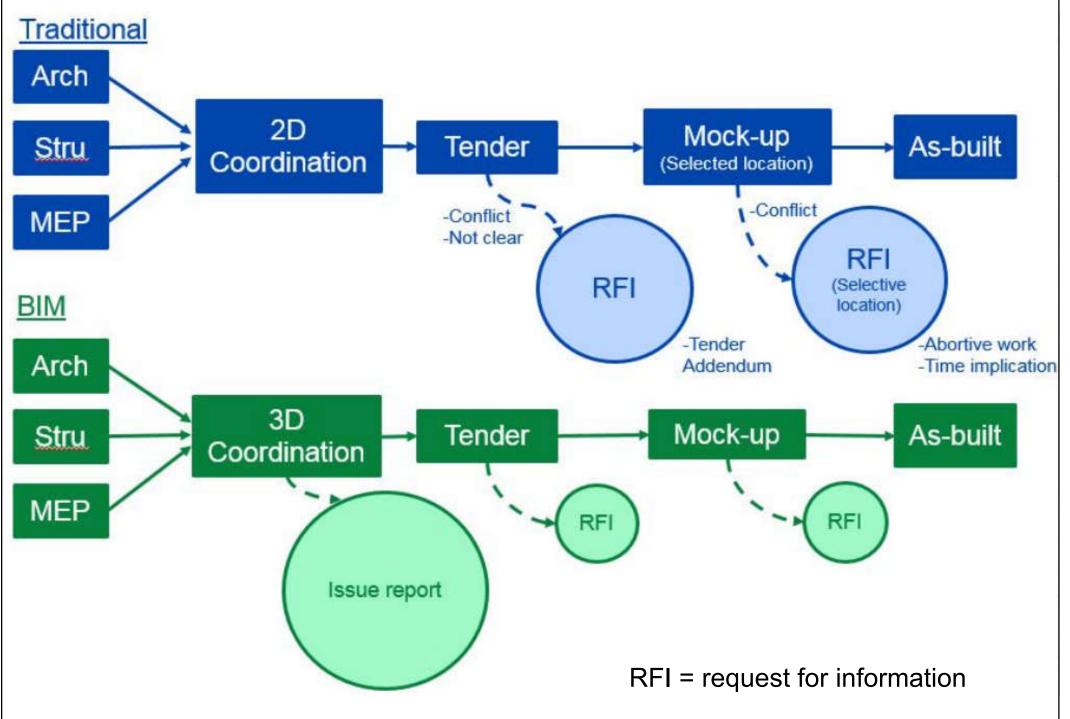
https://ibse.hk/BIM-Training/

4.3 MEP Design Management

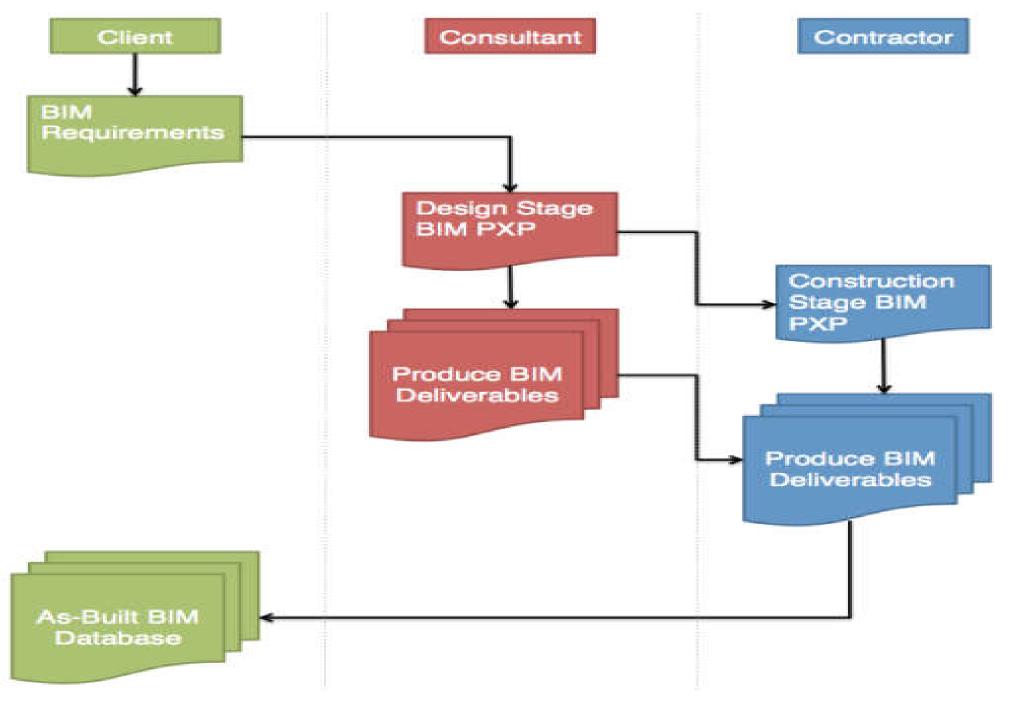
Ir Dr. Sam C. M. Hui

Department of Mechanical Engineering
The University of Hong Kong
E-mail: cmhui@hku.hk

Contents



- BIM process
- Project Execution Plan (PXP)
- Modelling methodology
- Level of development (LOD)
- MEP coordination


BIM process overview Operation Design Procure Construction Construction **Fabricate** Set Out Install Commission Hand Over Model Design Model Concept Construction Model **Federated** QS Takeoff Model **Drawings** Fabrication 3D **Schedules Analysis** Visualise 3D model & data is handed down the line Concept Design Construction As-built model model model model

(Source: https://www.bimmepaus.com.au)

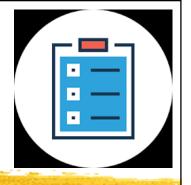
Comparison of traditional and BIM workflows

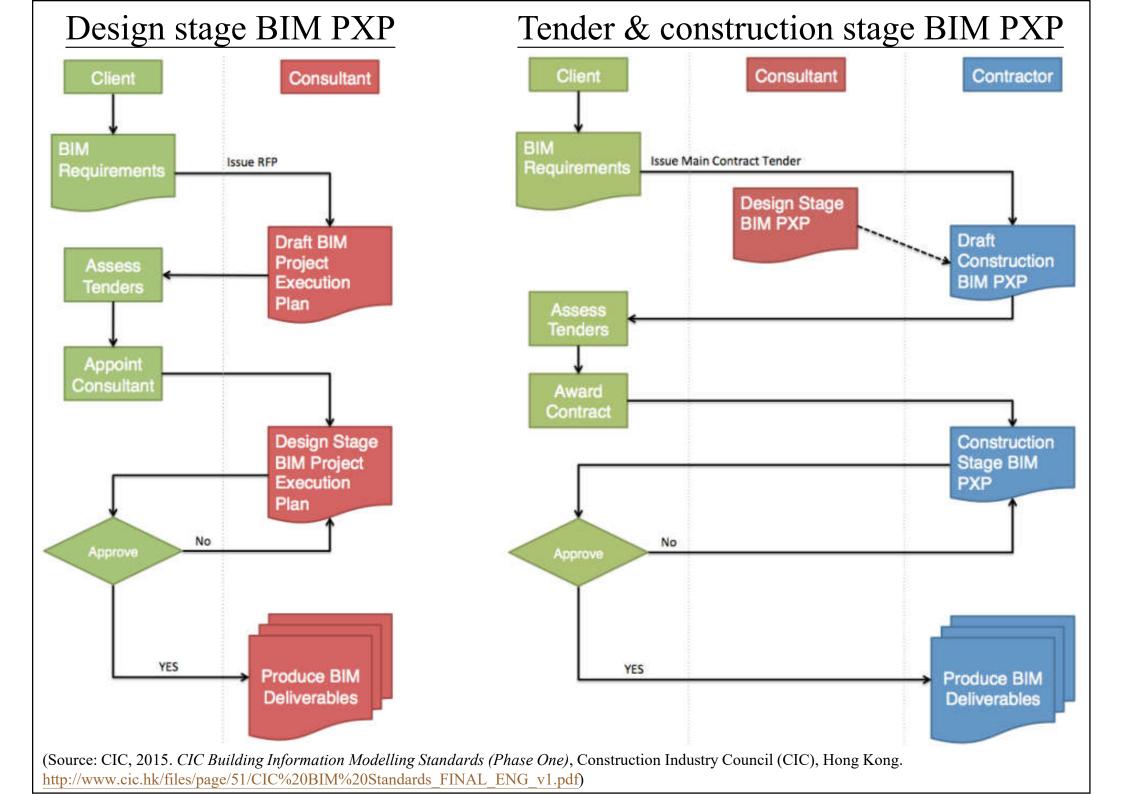
Typical BIM design management process

(Source: CIC, 2015. CIC Building Information Modelling Standards (Phase One), Construction Industry Council (CIC), Hong Kong. http://www.cic.hk/files/page/51/CIC%20BIM%20Standards FINAL ENG v1.pdf)

- Every BIM project shall have a clearly defined outcome
- The purpose of the BIM process should be set out and agreed by the client
- The successful delivery requires careful planning, detailed BIM specifications and a defined set of procedures and methodologies for the BIM implementation
- Usually a professional BIM Manager will lead and support the BIM process

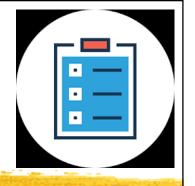
BIM process


- Define the scope of work for a BIM process
- Major issues:*
 - BIM Project Execution Plan (PXP) or BIM Execution Plan (BEP or BXP)
 - Modelling methodology
 - Level of development (LOD)
 - Component presentation style and data organisation



BIM PXP

- Created at the start and updated throughout the project period
- Developed by the client, or with support from the lead consultant (architect or engineer)
- Should outline the overall vision for the project and provide implementation details
- Include the agreed BIM deliverables & processes for a project; specifies the roles & responsibilities of project members



- Types of BIM PXP:
 - Design stage (prepared by the lead consultant BIM Manager)
 - Conceptual design, schematic/preliminary design, detailed design
 - Tender stage (contractors update & amend the design stage PXP)
 - Construction stage (prepared by the contractor's BIM Manager)
 - As-built stage (prepared by the facility manager)

- Typical contents of a BIM PXP:
 - Project information
 - Name, address, reference number, members, milestones
 - Client BIM requirements
 - BIM goals, uses & deliverables
 - BIM management
 - Roles, responsibility & authority
 - BIM team resources, competency & training
 - BIM deliverable schedule (programme)
 - Approval of BIM deliverables

- Typical contents of a BIM PXP: (cont'd)
 - BIM process
 - Individual discipline modelling
 - Revision management
 - Collaboration & model sharing
 - BIM coordination & clash detection
 - Drawing production
 - Model archive
 - Quality control

- Typical contents of a BIM PXP: (cont'd)
 - BIM procedures
 - BIM origin point & orientation (e.g. HK1980 Grid)
 - Model division, model units
 - File & layer naming convention
 - Drawing sheet templates
 - Annotations, dimensions, abbreviations & symbols
 - IT hardware & software solutions
 - Software versions, exchange formats, data security & back-up, hardware specifications, IT upgrades

Modelling methodology

- How to enable model development & build-up which will facilitate the efficient use or re-use of BIM data and models
- For feasibility & scheme design stages, a model for simple drawings & visualisations may be acceptable
- For detailed design, construction and as-built models, an accurate BIM is required
- The BIM Coordinators shall create & manage separate models for each design discipline and allow thorough coordination checks

- Discipline modelling guidelines:
 - 1. Site modelling
 - Topography, land uses, site formation, geology, massing models of surrounding buildings, roads, infrastructure
 - 2. Architectural modelling
 - Building or feature elements for walls, slabs, doors, windows, etc.

- Discipline modelling guidelines: (cont'd)
 - 3. Structural modelling
 - Analysis and physical models, load-bearing or non-load-bearing structures
 - 4. Building services (MEP) modelling
 - Ductwork, pipework, schematic diagrams, etc.
 - 5. Utilities modelling
 - Cables, pipework, drainage, gas, etc.

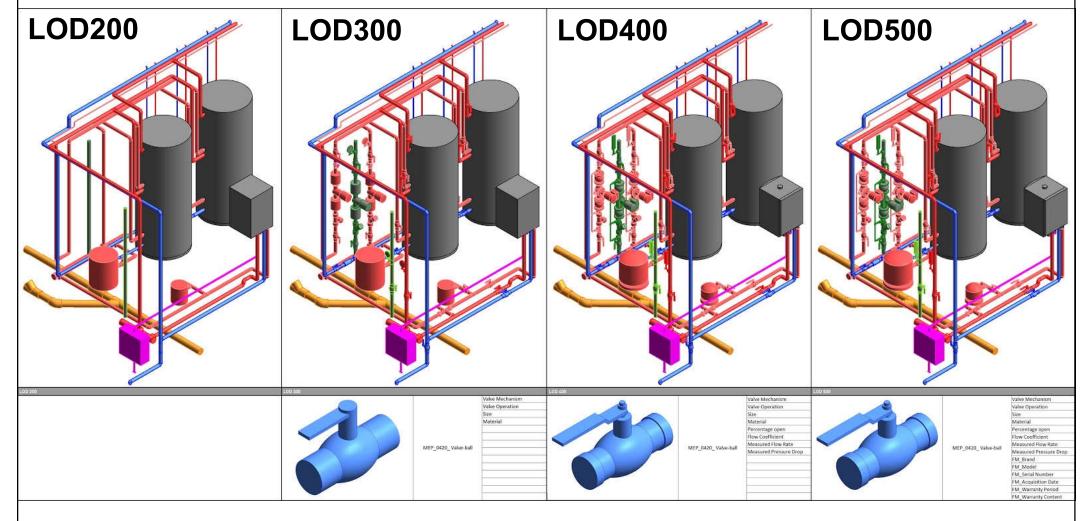
- Model set-up requirements:
 - BIM model zones
 - For separate areas or levels
 - To reduce BIM file size
 - BIM project coordinates
 - Match true world coordinates
 - e.g. HK 1980 Grid
 - Project origin point & principal datum

- Collaboration procedures:
 - Collaboration standards
 - For information management
 - Federated model creation*
 - BIM Manager to manage linked models
 - Facilitating BIM coordination
 - e.g. face-to-face meetings, web conferencing, BIM coordination room

Level of development (LOD)

- Clearly specify the content of models at each stage of a project
 - LOD definitions
 - LOD responsibility matrix (e.g. model author)
 - LOD specification
- Must understand the usability & limitations of the model elements
- Building systems are developed at different rates through the design process

Level of development (LOD) for MEP design process


LOD	Concept Phase	Traditions Phase	Example			
100	Conceptualization	Schematic design				
200	Criteria design	Design development				
300	Detailed design	Construction documentation	Valve mechanism Valve operation Size Material			
350	Beyond detailed design	Pre-construction				
400	Fabrication details	Construction administration	Percentage open Flow coefficient Measured flow rate Measured pressure drop			
500	Facility management (FM)	Hand over	FM: Brand FM: Model FM: Serial number FM: Acquisition date FM: Warranty period FM: Warranty content			

(Source: Revit MEP Best Practice https://www.modelical.com/en/gdocs/mep-best-practices/)

Examples of level of development (LOD) for MEP

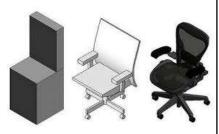
Level Of Development (LOD)

= Level of Graphical Detail (LoD) + Level of Information Included (LOI)

(*See also: Level Of Development https://www.modelical.com/en/gdocs/level-of-development/)

(Source: Revit MEP Best Practice https://www.modelical.com/en/gdocs/mep-best-practices/)

Adequate model LOD for a specific scope

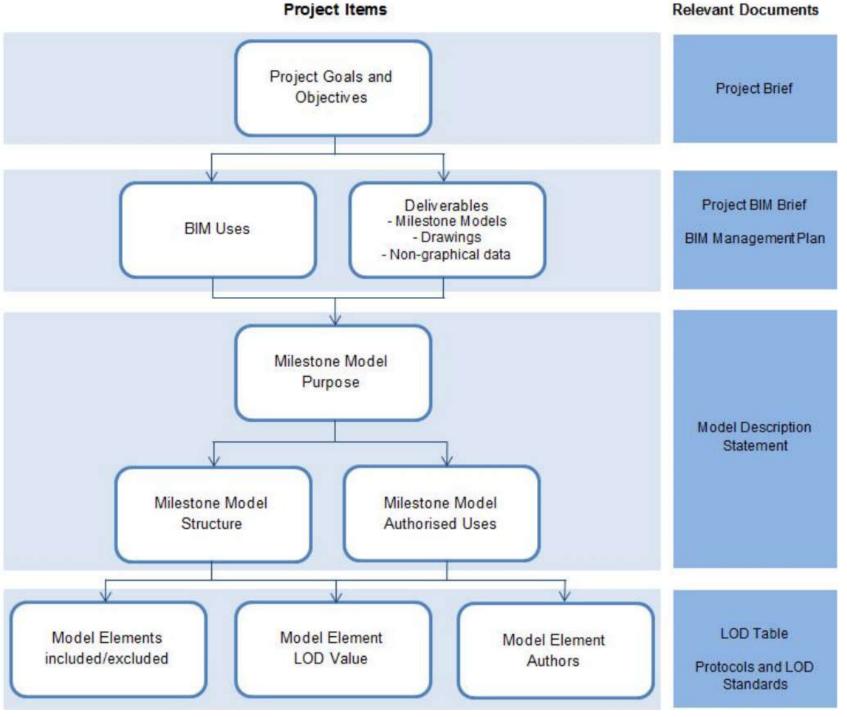

Model Use	LOD 200	LOD 300	LOD 400	LOD 500	
Coordination review and clash detection	Adequate	Optimal if also done LOD 200	Adequate if also done in LOD 300	Unnecessary	
4D Sequence	Adequate	Adequate if also done in LOD 200	Adequate but intensive labour	Unnecessary	
Quantity take- off and review	Not adequate	Adequate	Optimal	Adequate	
Site planning	Adequate	Unnecessary	Highly unnecessary	Unnecessary	

Bottom-line:

- Model sparingly to meet the needed model development so it can serve the intended uses of the model.
- Intended uses of the model should be clear in advance, so that the project and model development can be programmed accordingly.
- There is no point in defining whole models LODs. It is better to focus on element LODs.

(Source: Level Of Development https://www.modelical.com/en/gdocs/level-of-development/)

Level of development (LOD)


- A BIM use is a concrete action developed within the BIM Model
- A model should be developed at each stage to the point that it includes the information that is useful for the intended use and the project status
- The modelling effort should be limited to what is useful at each project milestone

Examples of BIM content per discipline (LOD 300 is used)

Model Use	Architecture	Structure	MEP
Coordination review and clash detection	 Interior partitions. Openings, windows and doors Staircases and ramps Elevators 	Walls, columns and retaining wallsSlabs and mat slabsFraming, beams, openings	 Ducts and mechanical equipment Sanitary downpipes and branches Water supply system Fire fighting system Shafts and shunts Lighting fixtures and panels
4D Sequence	Construction jointsConcrete pouring jointsFacade assemblies	EarthworksStructure assembliesFormworkCranes and machinery	•Only major elements
Quantity take- off and review	 Partitions and facade elements with specifications Windows and openings Staircases and ramps Elevators Finishes Furniture 	 •Walls, columns and retaining walls •Slabs and mat slabs •Framing, beams, openings •Foundations •Materials and coding •Reinforcement general quantities 	 Ducts and mechanical equipment Sanitary downpipes and branches Water supply system Fire fighting system Shafts and shunts Valves and pumps Lighting fixtures and panels
Site planning	Site facilities, fencingCranes and machineryFormwork and centering		

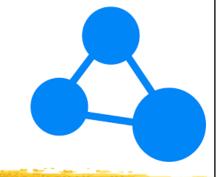
(Source: Level Of Development https://www.modelical.com/en/gdocs/level-of-development/)

LOD tables as a project management tool

(Source: NATSPEC BIM Paper: BIM and LOD https://bim.natspec.org/images/NATSPEC Documents/NATSPEC BIM LOD Paper 131115.pdf)

Level of development (LOD)

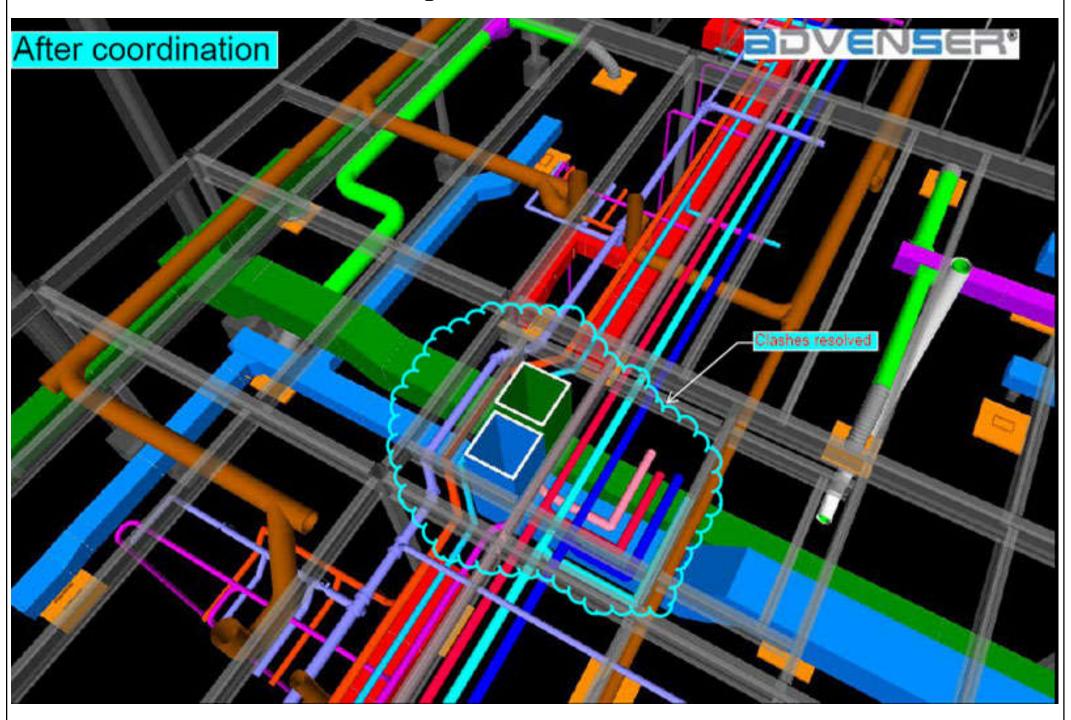
- Define LOD by reference to standards
 - Geometry (graphical information)
 - Defined by reference to BIMForum LOD Specification
 - Data (non-graphical information)
 - Defined by reference to NATSPEC BIM Object Element Matrix
- Use a standard LOD table to document the LOD of individual mode elements
 - Document agreed standards & any variations in Project BIM Brief or BIM Management Plan


BIM process and MEP deliverables

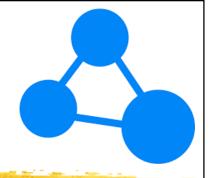
Stage	BIM MEP deliverables
1. Preparation & Conceptual Design	a. Understand Project Brief (client's requirements) b. Define BIM Execution Plan c. Set up BIM Project Template, coordinate system, grids, level height
2. Schematic Design	 a. Preliminary Model based on architectural massing, structural and site models (identify ceiling height, opening, load bearing structures, services connections on site) b. Determine design criteria, key service connections, services routes and plant room. c. Preliminary MEP model layout d. Preliminary MEP services calculation report e. Schematic drawings f. Alternate design
3. Detailed Design	a. Understand & validate Architectural and Structural Models b. Define zones, spaces, services routes and plant room c. MEP services calculation reports (load & sizing) d. MEP services model layout and detailed BOQ by trade e. Clash detection & resolution report among different MEP trades (ACMV, plumbing, sanitary, fire protection and electrical) f. Clash detection & resolution report w.r.t. Architectural & Structural models g. Regulatory submissions h. Tender documents

(Source: BCA, 2013. *BIM Essential Guide for BIM Adoption in an Organization*, Building and Construction Authority (BCA), Singapore. https://www.corenet.gov.sg/media/586143/Essential-Guide-Adoption.pdf)

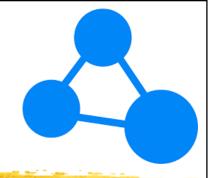
BIM process and MEP deliverables (cont'd)

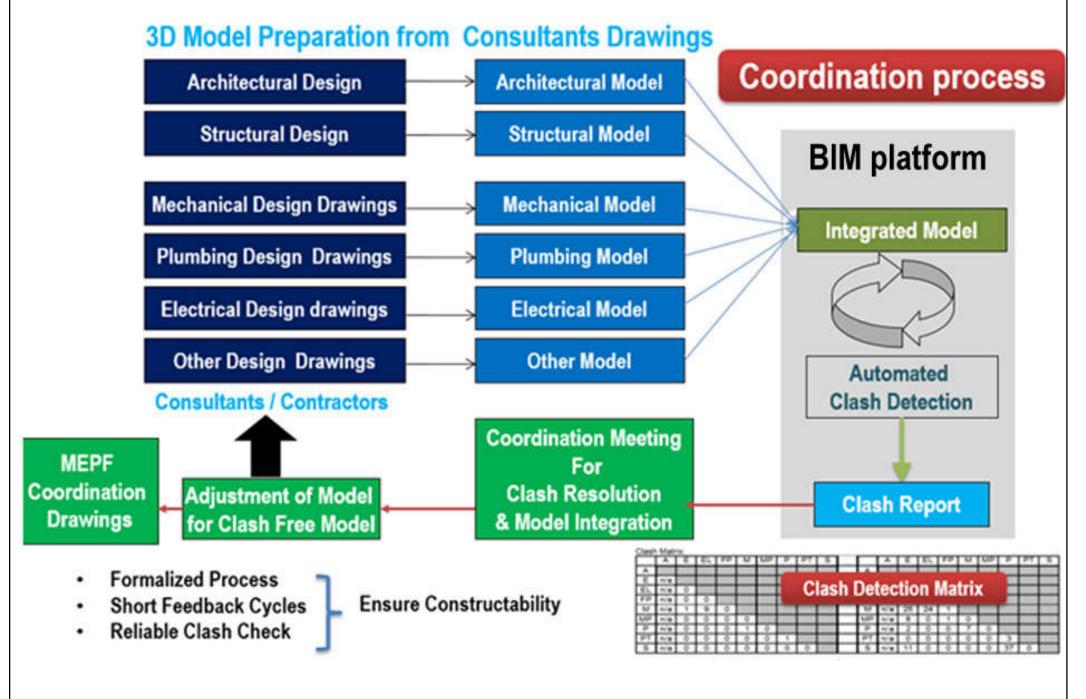

Stage	BIM MEP deliverables
4. Construction	 a. Design validation report b. RFI (request for information) resolution c. Shop & working drawings d. Single services drawings (SSD) & combined services drawings (CSD) e. Detailed schedule of materials & quantities
5. As Built	a. As constructed model & drawings b. Operation & Maintenance Manual (OMM) c. Commission reports
6. Facility Management	a. As built model

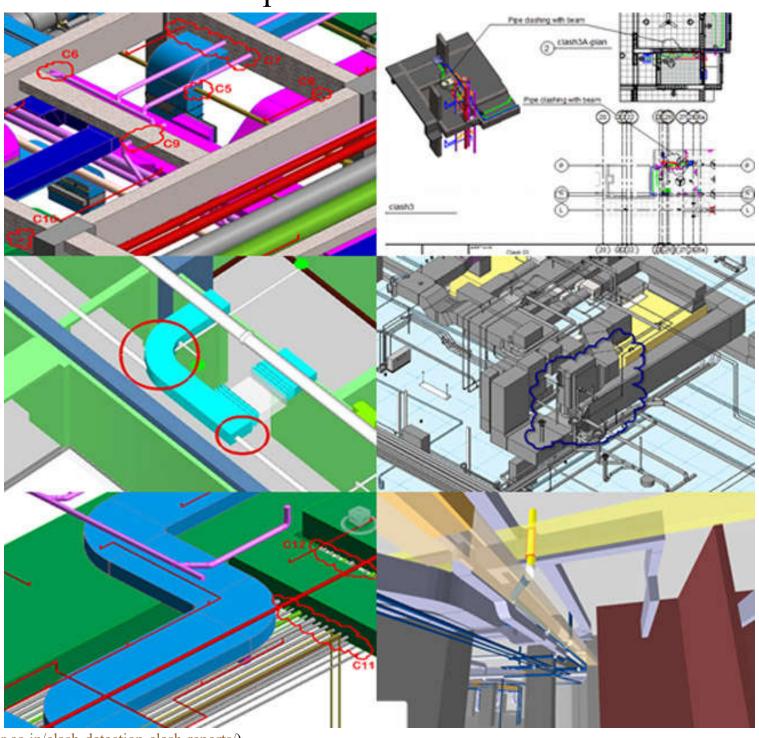
MEP coordination


- MEP coordination refers to the spatial coordination of all building services (HVAC, pipework, plumbing & electrical systems) with other disciplines making up the building structure, architectural elements, fabric & external envelope (steel, concrete, false ceilings, etc.)
 - Acts as a link between the architectural design, the engineering system & the construction process

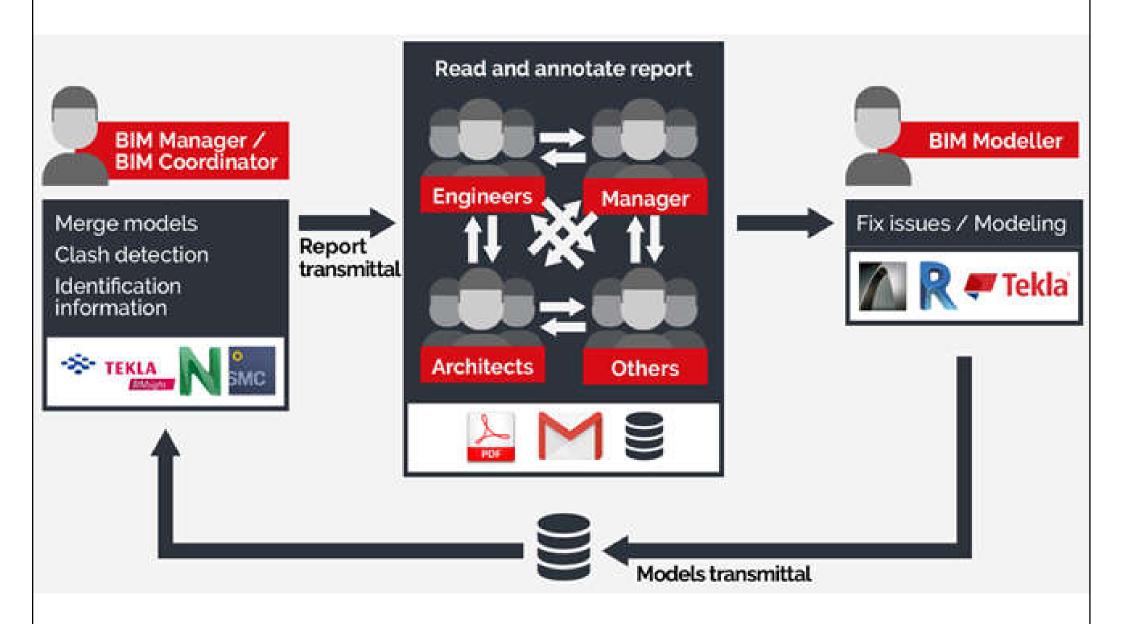
An example of MEP coordination


(Source: https://www.advenser.com/mep-coordination/)


- Typical stages involved in MEP coordination:
 - http://www.xscad.com/blog/typical-stages-involved-in-mep-coordination/
 - 1. Review of consultant design drawings & architectural/structural plans
 - 2. 3D model creation
 - 3. Clash detection & resolution
 - 4. Create coordinated drawings & sections
 - 5. Create detailed service drawings
 - 6. Create fabrication drawings, spool and hangar drawings
 - 7. Create as-built drawings which include all site-based changes, modifications & differences


- Benefits of MEP coordination using BIM:
 - Improve the spatial coordination process with a
 3D approach
 - Better avoidance of clashes
 - Reduce conflicts & reworks in the field
 - Enhance prefabrication of MEP Systems
 - Promote analytical capabilities using BIM coordination (e.g. knowledge based reasoning)

BIM coordination process


(Source: http://bimstar.co.in/)

Examples of clash detection

(Source: http://bimstar.co.in/clash-detection-clash-reports/)

Typical BIM model coordination workflow

(Source: Are you really in control of communications around your 3D models? https://bimtrack.co/blog/blog-posts/are-you-really-in-control-of-communications-around-your-3d-models)

Examples of clash report (from Navisworks)

AD us MED	Tolerance	Clashes	New	Active	Reviewed	Approved	Resolved	Туре	Status
AR vs MEP	0.000m	301	2	296	1	1	1	Hard	OK

											lte	m1				Item 2	
Image	Clash Name	Status	Distance	Grid Location	Description	Date Found	Date Approved	Approved By	Clash Point	ltem ID	Layer	Item Name	ltem Type	ltem ID	Layer	Item Name	Item Type
	Clash1	New	-0.128	C-2:01- First Floor	Hard	2017/1/19 09:14.07			y:6.112,		First	Default Wall	Solid		Second	PVC-C	Line
	Clash2	Reviewed		C-2:02- Second Floor	Harr	2017/1/19 09:14.07			y:6.112,	ID:	Second	Default Wall	Solid	ID:	Second	PVC-C	Line
	Clash3	Active	-0.125	H-2:01- First Floor	Hard	2017/1/19 09:14.07			y:6.112,	Element ID: 300480	First		Solid			PVC-C	Line
	Clash4	Active	-0.125	C-2:01- First Floor	Hard	2017/1/19 09:14.07			y:6.112,	ID:	First	Default Wall	Solid			PVC-C	Line

Name Distance* Status* Clash Point* Basement Clashes
-0.10m
Active
-52.83m, 4.11m, 7.72m

Item 1*

 Element ID
 292404

 Layer
 2ND FLOOR

 Item Name*
 W14X159

 Item Type*
 Solid

Item 2*

Element ID 870736
Layer <No level>
Item Name* Galvanized
Item Type* Solid

Name
Distance
Clash Group
Description
Status
Clash Point
7.72m
Date Created

-52.83m, 4.11m, 2011/12/12 10:30:42

Basement Clashes

Clash1

Hard Active

-0.10m

Item 1

 Element ID
 292404

 Layer
 2ND FLOOR

 Item Name
 W14X159

 Item Type
 Solid

Item 2

Element ID 870736
Layer <No level>
Item Name Galvanized
Item Type Solid

(Source: https://knowledge.autodesk.com/)