MEBS6000 Utility Services

Worked Example on Above and Underground Drainage Pipe Sizing

Question

Consider a residential building having 20 storeys and each storey houses 8 flats. Each flat has a single bathroom (with a basin, a shower and a water closet) and a kitchen (with a sink and a washing machine).

Develop a draft schematic diagram for this building assuming two flats on each floor to share a vertical stack.

Solution

The discharge units (DU) for individual sanitary fitments in one flat are as follows:
Basin - $0.3 \mathrm{~L} / \mathrm{s}$
Shower-0.4 L/s
W.C. - 2.0 L/s (assume 9L cistern)

Sink - $1.3 \mathrm{~L} / \mathrm{s}$
Washing machine $-0.6 \mathrm{~L} / \mathrm{s}$
Total: $4.6 \mathrm{~L} / \mathrm{s}$ (for one flat)

Total discharge units for one single stack $=4.6 \mathrm{~L} / \mathrm{s} \times 2 \times 20$ storeys $=184 \mathrm{DU}$
The design water flow is computed using K-factor
$Q_{w w}=k \sqrt{\sum D U}=0.5 \sqrt{184}=6.8 \mathrm{~L} / \mathrm{s}$
With secondary ventilated discharge stack, $100 \mathrm{~mm} \varnothing$ stack $+50 \mathrm{~mm} \varnothing$ vent $\rightarrow 7.3 \mathrm{~L} / \mathrm{s}$ Thus, $100 \mathrm{~mm} \varnothing$ stack $+50 \mathrm{~mm} \varnothing$ vent are chosen

The draft schematic diagram for a single stack is shown.
Note:
a) the venting for soil fitment
b) cross vent between vent pipe and soil and waste stack every alternate floors
c) vent pipe connecting the stack at the top and at the bottom of the vertical stack
d) traps provided for all sanitary fitments

Question

Consider a residential district with a population of 2500 residents. What will be the size of the main sewer pipe for the district?

Solution

The common design figure for residential discharge $=230 \mathrm{~L}$ per person per day
This figure is adopted for designing sewage treatment works.

When handling this data, the design discharge rate per hour is taken as:
$1 / 2$ of the daily discharge is made in a 6 hour period.
i.e. $1 / 2$ of 230 L is discharged into the sewage pipe work within 6 hours.
$=1 / 2 \times 230 \mathrm{~L} / 6 \mathrm{hr}=19.2 \mathrm{~L} / \mathrm{hr}$ for each resident
Thus, total discharge
$=19.2 \mathrm{~L} / \mathrm{hr} \times 2500=47917 \mathrm{~L} / \mathrm{hr}=13.3 \mathrm{~L} / \mathrm{s}\left(0.0133 \mathrm{~m}^{3} / \mathrm{s}\right)$

Consider half bore flow for the sewer pipe, and the design flow velocity $=1.5 \mathrm{~m} / \mathrm{s}$
Let $\mathrm{D}=$ diameter of pipe
$Q=\frac{\pi D^{2}}{4} \times \frac{1}{2} \times v$
$0.0133=\frac{\pi D^{2}}{4} \times \frac{1}{2} \times 1.5$
$D=0.15 \mathrm{~m}$

Consider 150 mm pipe, the hydraulic mean depth (HMD or m_{d}) for $1 / 2$ bore flow $=\mathrm{D} / 4$
i.e. $m_{d}=0.15 / 4=0.0375 \mathrm{~m}$

The inclination can be computed using Chezy Formula
$v=c \sqrt{m_{d} \times i}$
$1.5=65 \sqrt{0.0375 \times i}$ (Chezy Coefficient is usually taken as 65)
The inclination $i=0.0142$ or 1 in 70 (this complies with the Buildings Regulations)

Thus the selected pipe size is $\varnothing 150 \mathrm{~mm}$ and the inclination is 1 in 70 .

The full bore carrying capacity $Q_{o}=2 \times 1 / 2$ bore capacity of pipe (see proportional table or chart)
The full bore flow velocity $v_{o}=1 / 2$ bore flow velocity (see proportional table or chart)
Thus, $Q_{o}=0.0266 \mathrm{~m}^{3} / \mathrm{s}$ and $v_{o}=1.5 \mathrm{~m} / \mathrm{s}$
It is necessary to check against minimum flow to ensure that self-cleansing velocity is met.
The minimum flow $=1 / 6$ of design flow $=1 / 6 \times 0.0133 \mathrm{~m}^{3} / \mathrm{s}=0.00222 \mathrm{~m}^{3} / \mathrm{s}$
Thus, the proportional flow $\frac{Q}{Q_{o}}=\frac{0.00222}{0.0133}=0.17$
From the proportional table or chart,
The proportional depth $\frac{d}{D}=0.27$
The proportional velocity $\frac{v}{v_{o}}=0.79$
Thus, the velocity $v=0.79 v_{0}=0.79 \times 1.5=1.2 \mathrm{~m} / \mathrm{s}$ ($>0.75 \mathrm{~m} / \mathrm{s}$ self-cleansing velocity) (acceptable)

Proportional Flow Chart Data for Circular Pipes laid to fall

HMD $=\frac{\pi r^{2}}{2} \div \frac{\pi d}{2}$

Proportional Depth (d/D)	Proportional Velocity $\left(\mathrm{v} / \mathrm{v}_{0}\right)$	Proportional Discharge $\left(Q / Q_{0}\right)$	Proportional Depth (d/D)	Proportional Velocity $\left(v / v_{0}\right)$	Proportional Discharge $\left(Q / Q_{0}\right)$	Proportional Depth (d/D)	Proportional Velocity $\left(v / v_{0}\right)$	Proportional Discharge $\left(Q / Q_{0}\right)$
0.01	0.163	0.0003	0.34	0.870	0.2608	0.67	1.080	0.7693
0.02	0.230	0.0011	0.35	0.880	0.2744	0.68	1.083	0.7843
0.03	0.281	0.0025	0.36	0.889	0.2883	0.69	1.086	0.7992
0.04	0.324	0.0043	0.37	0.899	0.3024	0.70	1.089	0.8139
0.05	0.361	0.0067	0.38	0.908	0.3166	0.71	1.091	0.8284
0.06	0.394	0.0097	0.39	0.917	0.3311	0.72	1.093	0.8426
0.07	0.425	0.0131	0.40	0.926	0.3458	0.73	1.095	0.8566
0.08	0.453	0.0170	0.41	0.934	0.3606	0.74	1.097	0.8703
0.09	0.479	0.0214	0.42	0.942	0.3756	0.75	1.099	0.8838
0.10	0.504	0.0262	0.43	0.950	0.3907	0.76	1.100	0.8969
0.11	0.527	0.0316	0.44	0.958	0.4060	0.77	1.101	0.9097
0.12	0.549	0.0373	0.45	0.966	0.4214	0.78	1.102	0.9222
0.13	0.570	0.0436	0.46	0.973	0.4369	0.79	1.103	0.9343
0.14	0.590	0.0502	0.47	0.980	0.4526	0.80	1.103	0.9460
0.15	0.610	0.0573	0.48	0.987	0.4683	0.81	1.103	0.9573
0.16	0.628	0.0648	0.49	0.994	0.4841	0.82	1.103	0.9682
0.17	0.645	0.0728	0.50	1.000	0.5000	0.83	1.103	0.9786
0.18	0.662	0.0811	0.51	1.006	0.5159	0.84	1.102	0.9884
0.19	0.679	0.0898	0.52	1.012	0.5319	0.85	1.101	0.9978
0.20	0.695	0.0989	0.53	1.018	0.5480	0.86	1.100	1.0066
0.21	0.710	0.1083	0.54	1.024	0.5640	0.87	1.099	1.0147
0.22	0.724	0.1182	0.55	1.029	0.5801	0.88	1.097	1.0222
0.23	0.739	0.1283	0.56	1.035	0.5962	0.89	1.095	1.0290
0.24	0.752	0.1389	0.57	1.040	0.6122	0.90	1.092	1.0350
0.25	0.766	0.1497	0.58	1.045	0.6283	0.91	1.089	1.0402
0.26	0.779	0.1609	0.59	1.049	0.6443	0.92	1.085	1.0444
0.27	0.791	0.1724	0.60	1.054	0.6602	0.93	1.081	1.0477
0.28	0.804	0.1842	0.61	1.058	0.6761	0.94	1.076	1.0497
0.29	0.815	0.1963	0.62	1.062	0.6919	0.95	1.070	1.0504
0.30	0.827	0.2086	0.63	1.066	0.7076	0.96	1.064	1.0495
0.31	0.838	0.2213	0.64	1.070	0.7232	0.97	1.056	1.0466
0.32	0.849	0.2342	0.65	1.074	0.7387	0.98	1.046	1.0410
0.33	0.860	0.2474	0.66	1.077	0.7541	0.99	1.033	1.0309

