MEBS6000 Utility Services

Worked Example on Hot Water System

Question

A centralized direct hot water system for a service apartment is drafted as shown in the diagram.
Water is supplied at $65^{\circ} \mathrm{C}$ from the hot water storage tank to the water points. The design flow rate is $1.4 \mathrm{~L} / \mathrm{s}$ at peak simultaneous demand. The hot water storage tank is located 5 m above the boiler.
i) Determine the hot water boiler capacity and the size of the hot water storage tank.
ii) Properly size the primary circuit if the flow is to be driven by natural convection.
iii) Size the secondary circuit supply and return pipes.

Solution

i)

It was just given that the hot water design flow rate $=1.4 \mathrm{~L} / \mathrm{s}$.
It is reasonable to assume a water storage tank size for 1-2 hours consumption, and the boiler will recover the hot water before the next peak demand, which is usually around 5 hours from the last one.

Consider the storage can last for 1.5 hours,
Hot water storage $=1.4 \mathrm{~L} / \mathrm{s} \times 1.5$ hours $\times 3,600 \mathrm{~s}=7,560 \mathrm{~L}$

The total heat input to heat up $7,560 \mathrm{~L}$ of water
$=7,560 \mathrm{~kg} \times 4.2 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C} \times(65-20)^{\circ} \mathrm{C}$
$=1,428,840 \mathrm{~kJ}$

Consider heating time $=5$ hours
Thus the effective heating capacity of the boiler
$=1,428,840 \mathrm{~kJ} /(5 \times 3,600 \mathrm{~s})$
$=79.4 \mathrm{~kW}$ (say 80kW)
ii)

The difference in pressure between the primary return and supply is given by
$\Delta P=\left(\rho_{r}-\rho_{s}\right) g h$
At $65^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ supply and return temperature, the relevant densities are $980 \mathrm{~kg} / \mathrm{m}^{3}$ and $998 \mathrm{~kg} / \mathrm{m}^{3}$ respectively
$\Delta P=(998-980) \times 9.8 \times 5=882 \mathrm{~Pa}$
This is the driving force for the natural circulation between the boiler and the hot water storage tank
Let the total measured distance of the primary circuit $=20 \mathrm{~m}$ (vertical 5 m supply and return)
Equivalent pipe length $=20+30 \%=26 \mathrm{~m}$

Thus the pressure drop available $=882 \mathrm{~Pa} / 26 \mathrm{~m}=34 \mathrm{~Pa} / \mathrm{m}$ run
Take the density $=997.5 \mathrm{~kg} / \mathrm{m}^{3}$ (at average temperature $42.5^{\circ} \mathrm{C}$)
Pressure drop $=0.0035 \mathrm{mH} / \mathrm{m}$ run
From copper pipe sizing chart, suitable pipe size $=76 \mathrm{~mm} \varnothing(1.4 \mathrm{~L} / \mathrm{s}, 0.0024 \mathrm{mH} / \mathrm{m}$ run)
iii)

At $1.4 \mathrm{~L} / \mathrm{s}$, if the pressure drop $\approx 0.1 \mathrm{mH} / \mathrm{m}$ run
From copper pipe sizing chart, suitable pipe size $=35 \mathrm{~mm} \varnothing(1.4 \mathrm{~L} / \mathrm{s}, 0.09 \mathrm{mH} / \mathrm{m}$ run)

Consider,
Supply temperature $=65^{\circ} \mathrm{C}$, and
Allowable temperature drop from the supply to the return of the water storage tank $=10^{\circ} \mathrm{C}$
The supply pipe contributes to 60% of the heat loss of the secondary circuit, i.e. $6^{\circ} \mathrm{C}$ drop at the supply pipe

Since $35 \mathrm{~mm} \varnothing$ pipe is used, the heat loss per m run of the pipe $=17 \mathrm{~W} / \mathrm{m}$
Total heat loss $=17 \mathrm{~W} / \mathrm{m} \times 40 \mathrm{~m}=680 \mathrm{~W}$
Using $Q=m c \Delta T$
$680=m \times 4200 \times 6$, thus $\mathbf{m}=\mathbf{0 . 0 2 6} \mathbf{~ k g} / \mathrm{s}$ (minimum flow rate)

At $m=0.026 \mathrm{~kg} / \mathrm{s}$, use the smallest pipe diameter $15 \mathrm{~mm} \varnothing$ for secondary return, pressure loss $<0.02 \mathrm{mH} / \mathrm{m}$ (pressure loss is acceptable)

Heat loss of $15 \mathrm{~mm} \varnothing$ pipe $=9 \mathrm{~W} / \mathrm{m}$
Total heat loss $=9 \mathrm{~W} / \mathrm{m} \times 40 \mathrm{~m}=360 \mathrm{~W}$
$360=0.026 \mathrm{~kg} / \mathrm{s} \times 4200 \mathrm{~kJ} / \mathrm{kgK} \times \Delta T$
$\Delta T=3.3^{\circ} \mathrm{C}\left(<4^{\circ} \mathrm{C}\right)$
Therefore, the total temperature drop $=6^{\circ} \mathrm{C}+3.3^{\circ} \mathrm{C}=9.3^{\circ} \mathrm{C}\left(<10^{\circ} \mathrm{C}\right.$, acceptable)

