
MEBS6000 Utility Services

http://www.hku.hk/mech/msc-courses/MEBS6000/index.html

Session 3: Design of Cold and Hot Water Systems

Dr. Benjamin P.L. Ho

Department of Mechanical Engineering

The University of Hong Kong

E-mail: benjamin.ho@hku.hk

Sept. 2010

- Design principles
- Water demand
- Water storage
- Pipe sizing
- Pipe materials
- Pump systems
- Other considerations

- Common water supply systems
 - Cold water system
 - Potable water
 - Flushing water (fresh or salt water)
 - Non-potable water
 - Cleansing water
 - Fire service
 - Swimming pool filtration
 - Irrigation (e.g. for landscape)
 - Fountain circulation
 - Air-conditioning water, etc.
 - Hot water system (e.g. in hotels & hospitals)

Design principles

- Major tasks of water systems design:
 - 1. Assessment & estimation of demands
 - 2. Supply scheme & schematic
 - 3. Water storage requirements
 - 4. Piping layout
 - 5. Pipe sizing
 - 6. Pump system design
- The systems must comply with Water Authority (WSD) requirements

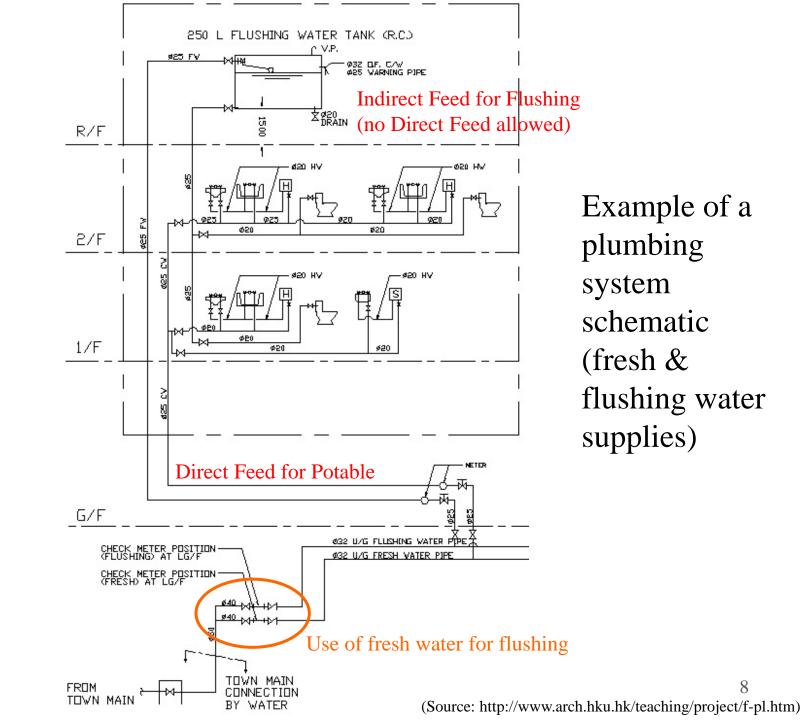
Design principles

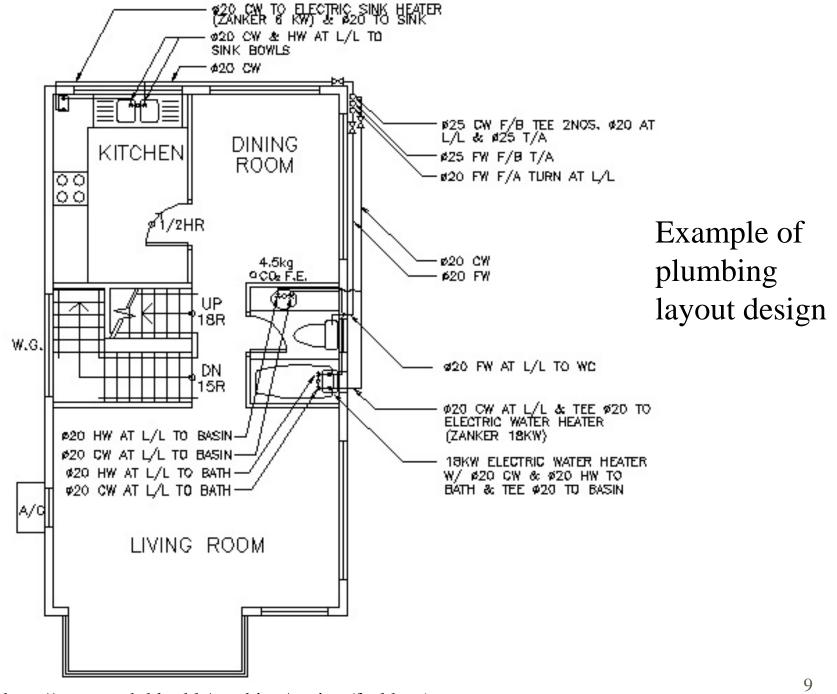
- General principles for installing plumbing works (from WSD Plumbing Installation Handbook)
 - All water fittings and pipework shall comply with the relevant Waterworks Regulations
 - All plumbing works shall be carried out in accordance with the Hong Kong Waterworks Requirements
 - All plumbing works shall be carried out by a licensed plumber
 - System main pipes should preferably not be run through the individual premises

PLUMBING

Design principles

- Building (Standards of Sanitary Fitments, Plumbing, Drainage Works and Latrine) Regulations (Law of Hong Kong CAP123)
 - Identifies the population and required sanitary fitments in the premise


plus


- Practice Notes for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers (PNAP)
 - Amendment of the regulations as necessary

Design Proposal

- Plumbing proposal (vetted by WSD)
 - A block plan in a scale of 1:1000 showing the location and boundary of the development
 - The locations should be marked with datum level
 - A plan showing the alignment and size of the proposed connection pipes from the main to the development
 - A plan showing the proposed alignment and size of the <u>internal underground water pipes</u> to be laid in the development
 - Vertical plumbing line diagrams

PLUMBING

Design principles

- Plumbing proposal (cont'd)
 - A schedule containing the following items:-
 - (a) number of flats/units in each block of the building
 - (b) address of each premise needs individually metered water supply
 - (c) number of draw-off points and sanitary fittings in each unit
 - (d) estimated daily consumption for all trade purposes
 - Meters arranged in meter rooms & fittings at the meter positions
 - The relevant standards for the pipe materials to be used
 - Capacities of the water storage tanks e.g. roof storage tanks

- Water demand depends on:
 - Type of building & its function
 - Number of occupants, permanent or transitional
 - Requirement for fire protection systems
 - Landscape & water features
- Typical appliances using the cold water
 - WC cistern, wash basin, bath, shower, sink
 - Washing machine, dishwasher
 - Urinal flushing cistern

Water demand

- Theoretical framework: Probability Theory
 - Based on statistics & a binomial distribution

$$P_{m} = \frac{n!}{m!(n-m)!} \times P^{m}(1-P)^{n-m}$$

$$P_{m} = \text{probability of occurrence};$$

$$n = \text{total number of fittings having the same probability}$$

$$m = \text{number of fitting in use at any one time}$$

- Probability factor of a particular number of draw off points occurring at any one time is:
 - P = (t / T)
 t = time of appliance filling
 T = time between successive usage of the appliance

Probability graph

Example:

100 appliances each take 30s water consumption each time, and are used at a frequency of 1200 s (20 min)

$$P = t / T$$

= 30/600
= 0.025

Using the graph, only 7 out of the 100 appliances will be in use at any one time.

Water demand

- Simultaneous demand
 - Most fittings are used only at irregular intervals
 - It is unlikely that all the appliances will be used simultaneously
 - No need to size pipework on continuous maximum
 - Key factors to consider:
 - Capacity of appliance (L)
 - Draw-off flow rate (L/s)
 - Draw-off period, or time taken to fill appliance (sec)
 - Frequency of use, time between each use (sec)

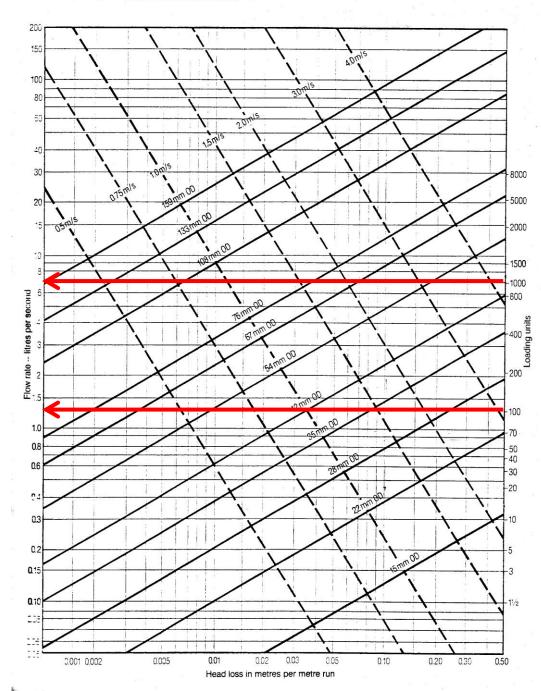
Water demand

- Loading Unit (L.U.)
 - A factor given to an appliance relating the flow rate at its terminal fitting to
 - Length of time in use
 - Frequency of use for a particular type
 - Use of building
 - Evaluate the 'probable maximum'
 - Relates the flow rate to the probable usage
- Also, consider design & minimum flow rates

Design flow rates and loading units

Outlet fitting	Design flow rate (l/s)	Minimum flow rate (l/s)	Loading units
WC flushing cistern single or dual flush (to fill in 2 min.)	0.13	0.05	2
WC trough cistern	0.15 per WC	0.10	2
Wash basin tap size ½ -DN 15	0.15 per tap	0.10	1.5-3.0
Spray tap or spray mixer	0.05 per tap	0.30	
Bidet	0.2 per tap	0.10	1
Bath tap, ¾ -DN 20	0.30	0.20	10
Bath tap, 1-DN 25	0.60	0.40	22
Shower head (will vary with type of head)	0.2 hot or cold	0.10	3
Sink tap, ½ -DN 15	0.20	0.10	3
Sink tap, ¾ -DN 20	0.30	0.20	5
Washing machine size – DN 15	0.2 hot or cold	0.15	
Dishwasher size – DN 15	0.15	0.10	3
Urinal flushing cistern	0.004 per position	0.002	

10


Water demand

- Apply probability theory, with caution
 - Assume random usage with fittings (is this true?)
 - Determine max. frequencies of use
 - Estimate average water usage rates & time
- The theory is valid with large nos. of fittings
 - Often expect to be exceeded at 1% time only (99% confidence level)
 - Reliability and risk management (what is the consequence)
- Need to understand the context/circumstance
 - Is it similar to average/typical? (* adjust data if needed)
 - Any foreseeable special requirements?

Water demand

- Design flow considerations
 - A small increase in demand over design level will cause a slight reduction in pressure/flow (unlikely to be noticed by users)
- Exceptional cases, such as:
 - Cleaners' sinks (depends on one's behavior)
 - Urinal flushing cisterns (continuous small flow)
 - Team changing rooms at sport clubs (high demand)
 - Special events (ad hoc demand)

Relationship between Loading Unit and the respective flow rate (L/s)

e.g. 100L.U. equivalent to 1.3L/s 1000L.U. = 7 L/s (*not 13L/s*)

(Source: Plumbing Engineering Services Design Guide)

Water storage

- Purposes of <u>water storage</u>
 - Provide for an interruption of supply
 - Accommodate peak demand
 - Provide a pressure (head) for gravity supplies
- Design factors
 - Type and number of fittings
 - Frequency and pattern of use
 - Likelihood and frequency of breakdown of supply (often design for 12- or 24-hour reserve capacity)
- Water storage requirements in Hong Kong to follow WSD recommendations

20

Recommended minimum storage of cold and hot water systems

Type of building	Minimum cold water storage (litres)	Minimum hot water storage (litres)
Hostel	90 per bed space	32 per bed space
Hotel	200 per bed space	45 per bed space
Office premises:		
- with canteen facilities	45 per employee	4.5 per employee
- without canteen facilities	40 per employee	4.0 per employee
Restaurant	7 per meal	3.5 per meal
Day school:		
- nursery or primary	15 per pupil	4.5 per pupil
- secondary or technical	20 per pupil	5.0 per pupil
Boarding school	90 per pupil	23 per pupil
Children's home or residential nursery	135 per bed space	25 per bed space
Nurses' home	120 per bed space	45 per bed space
Nursing or convalescent home	135 per bed space	45 per bed space

Note: Minimum cold water storage shown includes that used to supply hot water outlets.

Estimation of cold water storage per occupant

Type of building	Storage per occupant (litres)
Factories (no process)	10
Hospitals, per bed	135
Hospitals, per staff on duty	45
Hostels	90
Hotels	135
Houses and flats	135
Offices with canteens	45
Offices without canteens	35
Restaurant (* per meal)	7
Schools, boarding	90
Schools, day	30

(Source: www.engineeringtoolbox.com)

Estimation of hot water consumption

Type of building	Consumption per occupant (litres/day)	Peak demand per occupant (litres/hr)	Storage per occupant (litres)
Factories (no process)	22 - 45	9	5
Hospitals, general	160	30	27
Hospitals, mental	110	22	27
Hostels	90	45	30
Hotels	90 – 160	45	30
Houses and flats	90 – 160	45	30
Offices	22	9	5
Schools, boarding	115	20	25
Schools, day	15	9	5

Fixtures water requirements (demand at individual water outlets)

Type of fixture	Flow rate (litres/min)	Minimum supply pressure (kPa)
Bathtub faucet	19	55
Bidet	7.5	28
Laundry machine	15	55
Lavatory faucet, ordinary	7.5	55
Lavatory faucet, self closing	10	55
Shower head	19	55
Shower, temperature controlled	10	138
Sink 3/8", 1/2"	17	55
Sink 3/4"	23	55
Urinal flush valve	56	110
Water closet with flush valve	132	170
Water closet with gravity tank	10	55

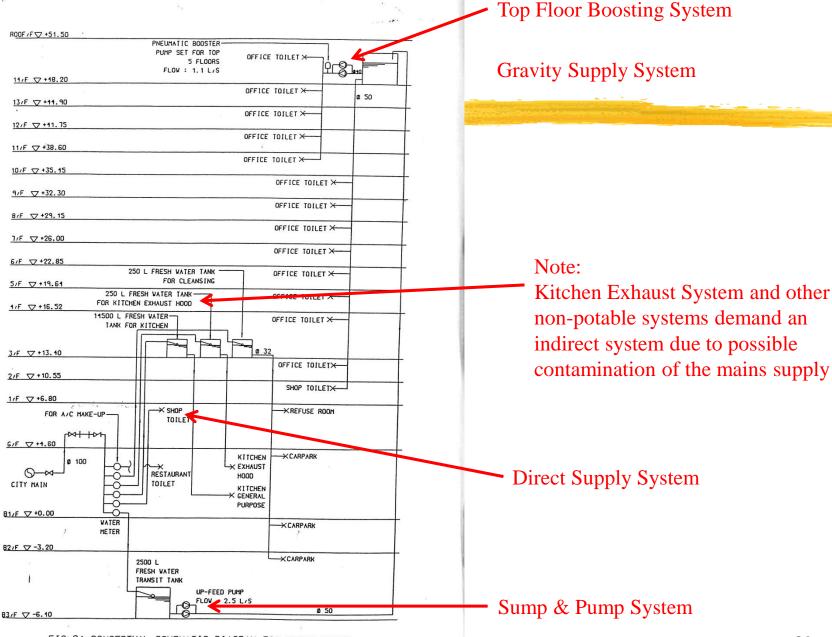
24

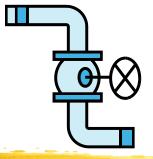
Fixtures, cold water storage, hot water consumption & flow rate

Type of fixture	Cold water storage capacity (litres)	Hot water consumption (litre/hr)	Hot water flow rate (litre/s)
Basin (private)	90	14	0.08
Basin (public)	90	45	0.08
Bath	900	90 - 180	0.15
Garden water tap	180		
Shower	450 – 900	180	0.5 - 0.6
Sink	90	45 – 90	0.15
Urinal	180		
WC	180		

Quantity of **flushing** water required

User	Average demand
Domestic buildings	450 L per number of required soil fitment per day (WSD 45L per point)
Offices, factories, department stores, shops, public buildings and other nondomestic buildings of a like nature	450 L per number of required soil fitment per day (WSD 45L per point)
Restaurants	13.5 L per seat per day
Cinemas	4.5 litres per seat per day
Schools	18 litres per head per day
Hotels and boarding houses	90 litres per room per day

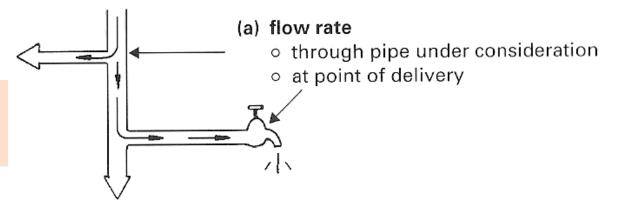

Hot water storage vessel – minimum capacities


Heat input for water	Dwelling with 1 bath		Dwelling with 2 baths*	
(kW)	With stratification litres	With mixing litres	With stratification litres	With mixing litres
3	109	122	165	260
6	88	88	140	200
10	70	70	130	130
15	70	70	120	130

Note: * Maximum requirement of 150 litre drawn off at 60 ℃ (2 baths plus 10 litre for kitchen use) followed by a further bath (100 litre at 40 ℃) after 30 min.

System Arrangements

- Direct Supply
- Indirect Supply
 - sump and pump supply system
 - cascade sump and pump supply system
 - pneumatic booster supply system
 - variable speed pumping supply system
 - top floor boosting supply system
 - gravity supply system
- Note that the overall system may include one or more of the above system arrangements



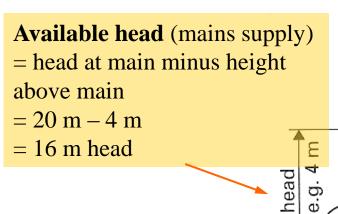
Pipe sizing

- Correct pipe sizes will ensure adequate flow rates at appliances and avoid problems, e.g.
 - Oversized Pipework
 - Additional & unnecessary installation costs
 - Delays in obtaining hot water at outlets
 - Increased heat losses from hot water pipes
 - Undersized Pipework
 - Inadequate delivery from outlets
 - Variation and fluctuation in temperature & pressure at outlets (e.g. showers and other mixers)
 - Increase in noise levels
- For small, simple installations, pipes are often sized based on experience & convention

1 m head = 9.81 kPa= 98.1 mbar

CWSC

31


Available head (from cistern)

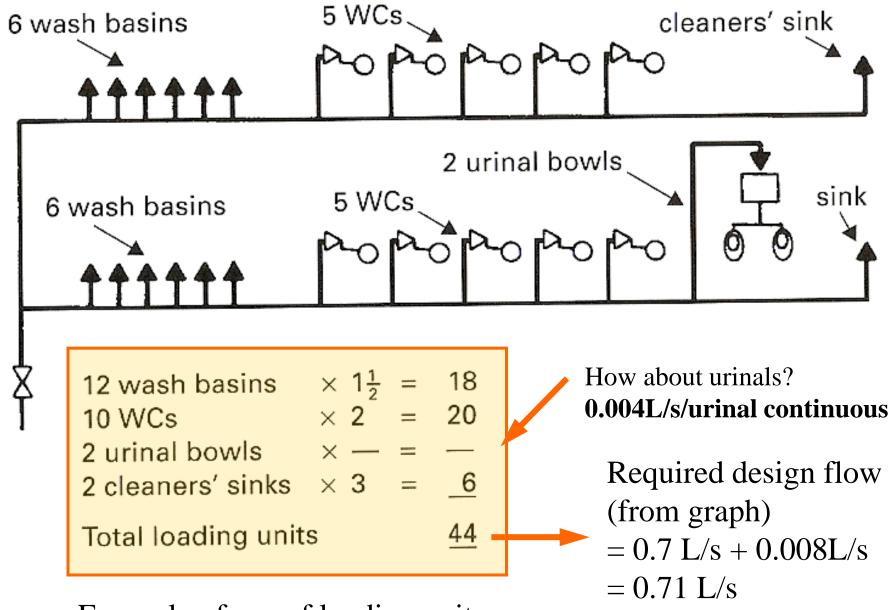
= vertical distance in metres from water line in cistern to point under consideration

(b) available head (pressure)

- o at the water main
- from the storage cistern
- at point of delivery

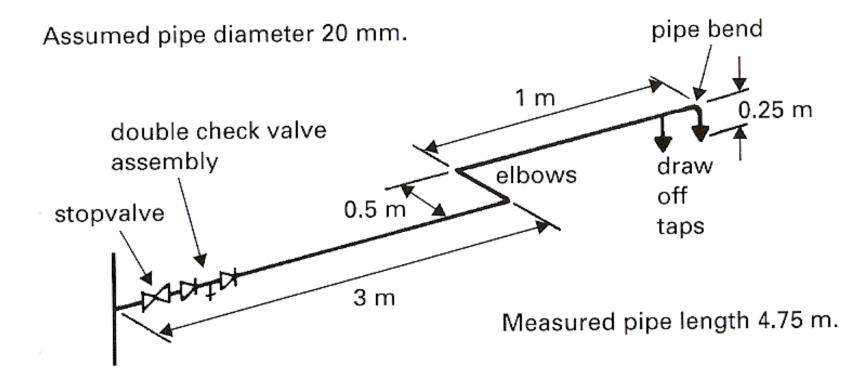
e.g. 20 m head

point of delivery resistance to flow through pipes, valves main and fittings


(Source: Garrett, R. H., 2008. *Hot and Cold Water Supply*)

Pipe sizing

- Pipe sizing procedure
 - (a) Determine the flow rate:
 - 1) by using loading units (L.U.) then convert to flow (L/s)
 - 2) for continuous flow (L/s)
 - 3) obtain the design flow rate (L/s) by adding 1) and 2)
 - (b) Determine the effective pipe length:
 - 4) work out the measured pipe length (m)
 - 5) work out the equivalent pipe length for fittings
 - 6) work out the equivalent pipe length for draw-offs
 - 7) obtain the effective pipe length (m) by adding 4), 5)
 & 6)


Pipe sizing

- Pipe sizing procedure (cont'd)
 - (c) Calculate the permissible loss of head:
 - 8) determine the available head (mH)
 - 9) determine the head loss per effective length (mH/m run) through pipes
 - (d) Determine the pipe diameter:
 - 10) decide the pipe diameter through fundamental equations or by pipe charts
 - 11) check against common design figures
 - Head Loss = 0.1mH/m run
 - Flow velocity < 3m/s for gravity feed
 - Flow velocity < 6m/s for pumped feed

Example of use of loading units

Take note that in HK, flush water and potable water are separate systems

Note There is no need to consider both branch pipes to taps.

```
Measured pipe length = 4.75 \text{ m}

Equivalent pipe lengths:

elbows 2 \times 0.8 = 1.6 \text{ m}

tee 1 \times 1.0 = 1.0 \text{ m}

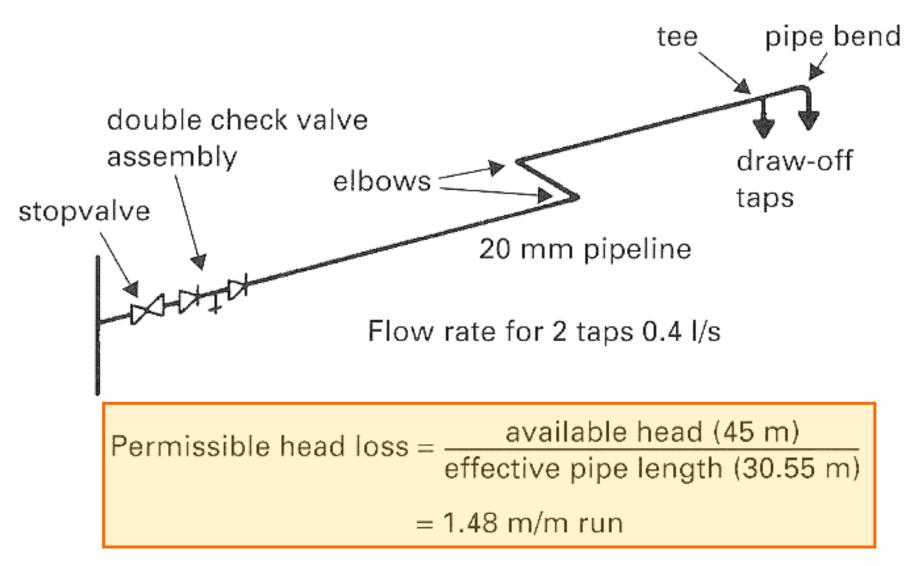
stopvalve 1 \times 7.0 = 7.0 \text{ m}

taps 2 \times 3.7 = 7.4 \text{ m}

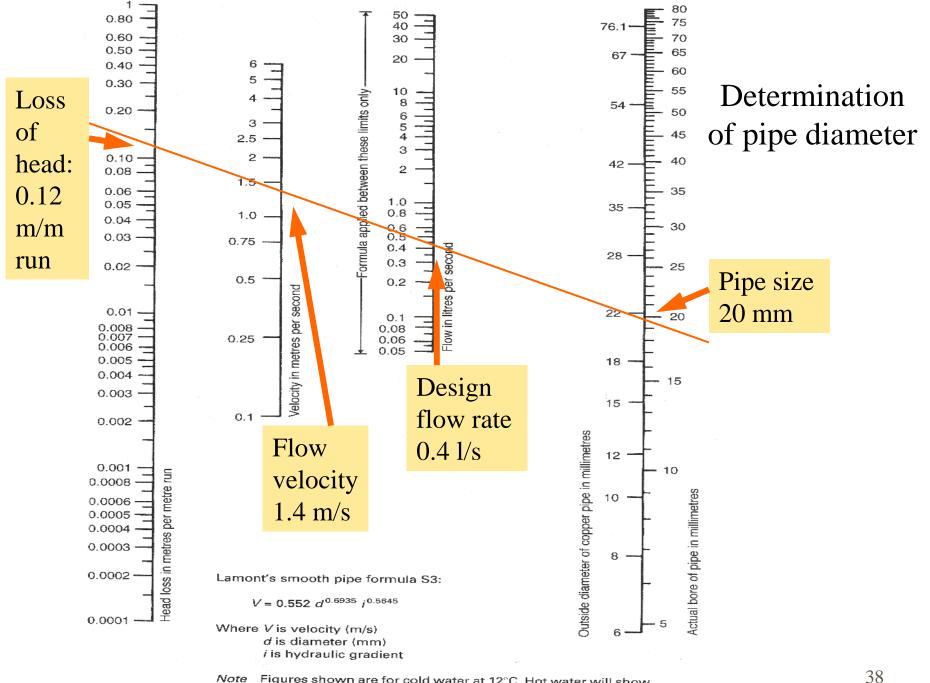
check valves 2 \times 4.3 = 8.6 \text{ m}

Effective pipe length = 30.35 \text{ m}
```

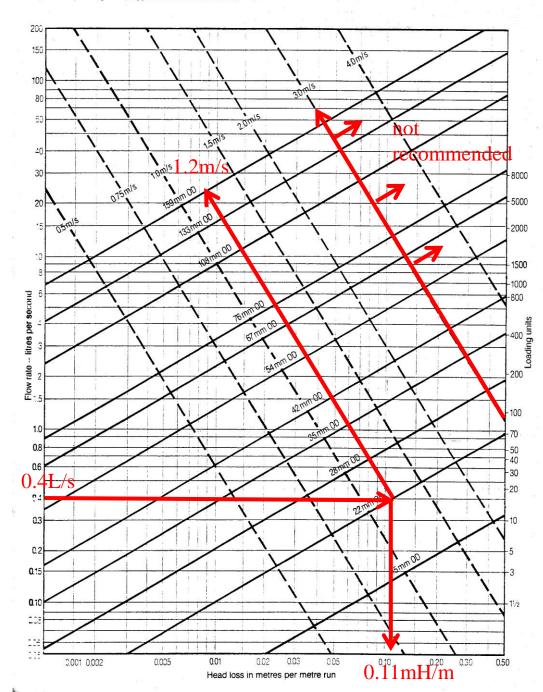
Example of measured & effective pipe lengths


Equivalent pipe lengths (copper, stainless steel and plastics)

Bore of pipe	Equivalent pipe length (m)			Equivalent pipe length (m)	
(mm)	Elbow	Tee	Stopvalve	Check valve	
12	0.5	0.6	4.0	2.5	
20	0.8	1.0	7.0	4.3	
25	1.0	1.5	10.0	5.6	
32	1.4	2.0	13.0	6.0	
40	1.7	2.5	16.0	7.9	
50	2.3	3.5	22.0	11.5	
65	3.0	4.5			
73	3.4	5.8	34.0		


Nominal size of tap	Flow rate (l/s)	Head loss (m)	Equiv. pipe length (m)
G1/2- DN 15	0.15	0.5	3.7
G1/2- DN 15	0.20	0.8	3.7
G3/4- DN 20	0.30	0.8	11.8
G1- DN 25	0.60	1.5	22.0

(Source: Garrett, R. H., 2008. Hot and Cold Water Supply)


Pressure at taps 45 m head

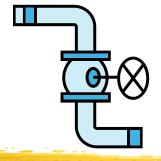
Example of permissible head loss

Note Figures shown are for cold water at 12°C. Hot water will show slightly more favourable head loss results. (Source: Garrett, R. H., 2008. Hot and Cold Water Supply)

(Source: Plumbing Engineering Services Design Guide)

Maximum recommended flow velocities

Water temperature	Flow velocity (m/s)						
(°C)	Pipes readily accessible	Pipes not readily accessible					
10	3.0	2.0					
50	3.0	1.5					
70	2.5	1.3					
90	2.0	1.0					


Note: Flow velocities should be limited to reduce system noise.

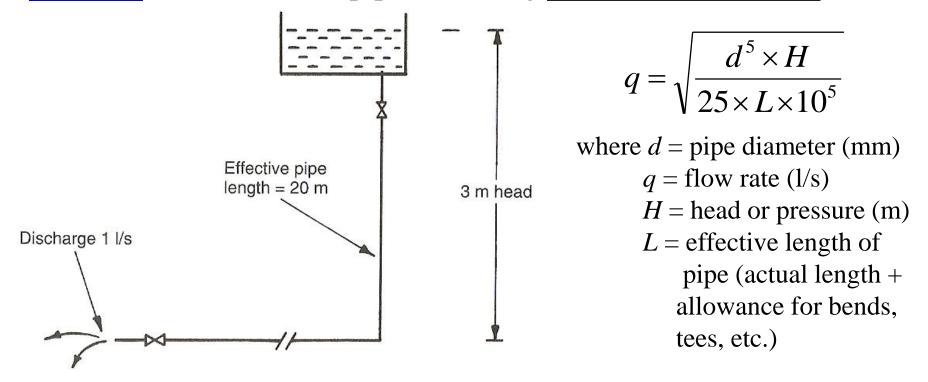
Pipe sizing

- Pipe sizing & design using tabular methods
 - Systematic way to design
 - Can also be done using spreadsheet or computer programs

Table D.4 Example of pipe sizing calculations for cold water services

Pipe	Flow rat	e	Pipe	Velocity	Head	Drop +	• 1		Pipe length		Head loss			Residual			
reference	Total	Design	size	υ	loss R	Rise -	head (7 + 14)	Actual	Effective	Pipe (10×6)	Valves ^{A)}	Total (11 + 12)	Available (8 – 13)	Fitting type	Required	Surplus	
m	LU	l/s	DN	m/s	kPa/m	kPa	kPa	m	m	kPa	kPa	kPa	kPa		kPa	kPa	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
Main servic	e pipe – fo	or this exa	mple tl	he minimu	m head i	n main =	300 kPa (3	bar)									
1 to 2	9 + list	0.6 + 0.3	28	1.7	1.4	-50	250	25	35	49	2 SV	70	180				
		0.9									= 21						
2 to 3	6 + list	0.4 + 0.2	22	2.0	2.5	-30	150	3	4.2	11		11	139				
		0.6															
3 to 4	3 + list	0.2 + 0.1	15	2.2	5	-30	109	3	4.2	21		21	88				
		0.3															
4 to 5	3 + list	0.3	15	2.2	5	+10	98	1	1.4	7	SV =	25	73				
											18						
5 to 6		0.2	15	1.5	2.3	+10	83	6	8.4	20		20	63	sink float	5	58	
5 to 7		0.1	15	0.75	0.6	-5	68	1	1.4	1		1	67	valve (5 mm φ)	30 4	37	

Pipe sizing


- Pipe sizing for hot water systems
 - The same as cold water, except cold feed pipe must also be considered

- Useful formulae for pipes:
 - Thomas Box formula
 - See example
 - Relative discharging power
 - See example

$$q = \sqrt{\frac{d^5 \times H}{25 \times L \times 10^5}}$$

$$N = \sqrt{\left(\frac{D}{d}\right)^5}$$

Example: Determine the pipe size using Thomas Box formula.

Answer: Using Thomas Box formula,

$$d = \sqrt[5]{\frac{(1)^2 \times 25 \times 20 \times 10^5}{3}} = 27.83 \text{ mm}$$

Hence, the nearest commercial size is 32 mm bore steel or 35 mm outside diameter copper.

Example: Relative discharge of pipes

$$N = \sqrt{\left(\frac{D}{d}\right)^5}$$
 where N = number of short branch pipes

$$D = \text{diameter of main pipe (mm)}$$

$$d = \text{diameter of short branch pipes (mm)}$$

(a) The number of 32 mm short branch that can be served from 150 mm main.

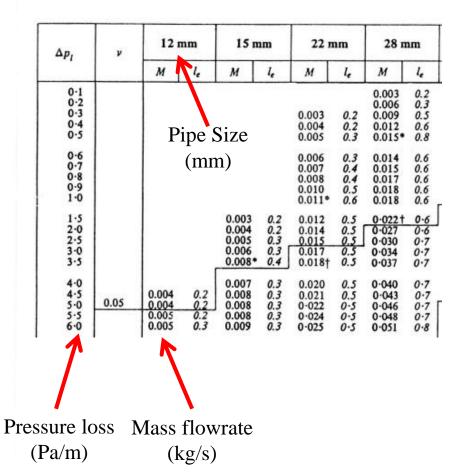
Answer:
$$N = \sqrt{\left(\frac{150}{32}\right)^5} = 47$$

(b) The size of water main required to supply 15 nos. 20 mm short branch pipes.

Answer:
$$D = d \times \sqrt[5]{N^2} = 20 \times \sqrt[5]{15^2} = 59$$

Hence, the nearest commercial size is 65 mm.

Table C4.14 Flow of water at 75°C in copper pipes


M	= mass flow rate		kg/s
le ·	= equivalent length of pipe ($\zeta = 1$)	m
Δp_i	= pressure loss per unit length		Pa/m
ν	= velocity		m/s

CIBSE Guide

(Re) = 2000(Re) = 3000

Δp_l ν	ν	12 r	nm	15 mm		22 mm		28 mm		35 n	nm	42 m	ım	v	Δp_{j}
	М	l _e	М	l _e	М	l _e	М	l _e	М	l _e	7/	1.		Δρ,	
0·1 0·2 0·3 0·4 0·5						0.003 0.004 0.005	0.2 0.2 0.3	0.003 0.006 0.009 0.012 0.015*	0.2 0.3 0.5 0.6 0.8	0.007 0.014* 0.017 0.020 0.023	0.4 0.8 0.7 0.7 0.7	0.016* 0.023 0.028 0.033† 0.037	0.8 0.9 0.9 0.9 0.9		0·1 0·2 0·4 0·4
0·6 0·7 0·8 0·9 1·0						0.006 0.007 0.008 0.010 0.011*	0.3 0.4 0.4 0.5 0.6	0.014 0.015 0.017 0.018 0.018	0.6 0.6 0.6 0.6 0.6	0.025 0.027 0.029† 0.031 0.032	0.7 0.7 0.7 0.8 0.8	0.041 0.045 0.049 0.052 0.056	1·0 1·0 1·0 1·0 1·0	0-05	0.0 0.1 0.1
1·5 2·0 2·5 3·0 3·5				0.003 0.004 0.005 0.006 0.008	0.2 0.2 0.3 0.3 0.4	0.012 0.014 0.015 0.017 0.018†	0.5 0.5 0.5 0.5 0.5	0.022† 0.027 0.030 0.034 0.037	0·6 0·7 0·7 0·7	0·041 0·049 0·056 0·062 0·068	0·8 0·9 0·9 0·9 1·0	0.070 0.083 0.095 0.105 0.115	1·1 1·2 1·2 1·2 1·3	0-10	1 · 2 · 2 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3
4·0 4·5 5·0 5·5 6·0	0.05	0.004 0.004 0.005 0.005	0.2 0.2 0.2 0.3	0.007 0.008 0.008 0.008 0.009	0.3 0.3 0.3 0.3 0.3	0.020 0.021 0.022 0.024 0.025	0.5 0.5 0·5 0·5	0·040 0·043 0·046 0·048 0·051	0·7 0·7 0·7 0·7 0·8	0.073 0.078 0.083 0.088 0.092	1·0 1·0 1·0 1·0	0·124 0·133 0·141 0·149 0·157	1·3 1·3 1·4 1·4		4.1 5.5 5.6
6·5 7·0 7·5 8·0 8·5		0.006 0.006 0.006* 0.006 0.006	0.3 0.3 0.3 0.2 0.2	0.009 0.009 0.010 0.010 0.010	0.3 0.3 0.3 0.3 0.3	0·026 0·027 0·028 0·029 0·030	0·5 0·5 0·5 0·5	0.053 0.055 0.058 0.060 0.062	0·8 0·8 0·8 0·8	0·097 0·101 0·105 0·109 0·113	I·I I·I I·I I·I	0·164 0·171 0·178 0·185 0·191	1·4 1·4 1·4 1·4 1·4	0.15	6· 7· 8· 8·
9·0 9·5 10·0 12·5 15·0		0.006 0.006 0.006 0.007 0.008	0.2 0.2 0.2 0.2 0.2	0.011† 0.011 0.011 0.013 0.014	0.3 0.3 0.3 0.3 0.3	0·031 0·032 0·033 0·038 0·042	0·6 0·6 0·6 0·6	0.064 0.066 0.068 0.077 0.086	0·8 0·8 0·8 0·8	0·116 0·120 0·124 0·141 0·156	1·1 1·1 1·2 1·2	0·198 0·204 0·210 0·238 0·264	1·5 1·5 1·5 1·5 1·6		9. 10. 12. 15.
17·5 20·0 22·5 25·0 27·5	0.10	0.008 0.009 0.010† 0.010 0.011	0.2 0.2 0.3 0.3	0.016 0.017 0.018 0.019 0.020	0.3 0.4 0.4 0.4 0.4	0.046 0.050 0.053 0.057 0.060	0.6 0.6 0.6 0.6 0.7	0·094 0·101 0·108 0·115 0·122	0·9 0·9 0·9 0·9	0·170 0·184 0·197 0·209 0·220	1·2 1·3 1·3 1·3	0·288 0·311 0·333 0·353 0·372	1·6 1·6 1·7 1·7	0.30	20 · 22 · 25 · 0
30·0 32·5 35·0 37·5 40·0	0.15	0.011 0.012 0.012 0.013 0.013	0.3 0.3 0·3 0·3	0·021 0·022 0·023 0·024 0·025	0·4 0·4 0·4 0·4 0·4	0·063 0·066 0·069 0·072 0·074	0·7 0·7 0·7 0·7 0·7	0·128 0·134 0·140 0·145 0·151	1.0 1.0 1.0 1.0 1.0	0·231 0·242 0·253 0·263 0·272	1·3 1·3 1·3 1·3 1·4	0·391 0·409 0·427 0·444 0·460	1·7 1·7 1·8 1·8 1·8		30 · 0 32 · 3 35 · 0 37 · 3 40 · 0
42·5 45·0 47·5 50·0 52·5		0·014 0·014 0·015 0·015 0·016	0·3 0·3 0·3 0·3	0·026 0·027 0·028 0·029 0·029	0·4 0·4 0·4 0·4	0·077 0·080 0·082 0·084 0·087	0·7 0·7 0·7 0·7 0·7	0·156 0·161 0·166 0·171 0·176	1·0 1·0 1·0 1·0	0·282 0·291 0·300 0·309 0·318	1·4 1·4 1·4 1·4 1·4	0·476 0·492 0·507 0·522 0·536	1·8 1·8 1·8 1·8 1·8		42 · 5 45 · 6 47 · 5 50 · 6 52 · 5
55·0 57·5 60·0 62·5 65·0		0·016 0·017 0·017 0·017 0·018	0·3 0·3 0·3 0·3	0.030 0.031 0.032 0.033 0.033	0·4 0·4 0·4 0·4 0·4	0·089 0·092 0·094 0·096 0·098	0·7 0·7 0·7 0·7 0·7	0·181 0·185 0·190 0·194 0·198	1·0 1·1 1·1 1·1	0·326 0·334 0·343 0·351 0·358	1·4 1·4 1·4 1·4 1·4	0·550 0·564 0·578 0·591 0·605	1·9 1·9 1·9 1·9 1·9	0.50	55-0 57-5 60-0 62-5 65-0
67·5 70·0 72·5 75·0 77·5		0.018 0.019 0.019 0.019 0.020	0·3 0·3 0·3 0·3	0-034 0-035 0-036 0-036 0-037	0·4 0·4 0·4 0·4 0·4	0·100 0·102 0·104 0·106 0·108	0·7 0·7 0·7 0·8 0·8	0·203 0·207 0·211 0·215 0·219	1·1 1·1 1·1 1·1 1·1	0·366 0·374 0·381 0·388 0·396	1·5 1·5 1·5 1·5	0.617 0.630 0.643 0.655 0.667	1·9 1·9 1·9 1·9		67·5 70·0 72·5 75·0 77·5

Hot Water System Secondary Return Pipe Sizing

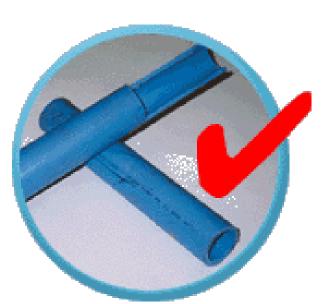
- Heat loss from hot water pipe
- Supply pipe sizing same as cold water supply
- Consider supply temp = 65° C
- Return temp = 55° C (min.)
- Take supply pipe = 60% of heat loss (i.e. drop of temp = 6°C

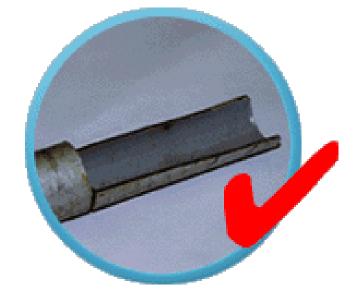
Copper (W/m run) at 40°C above ambient								
Nominal Bore	Bare	Insulated						
13	28	8						
19	39	11						
25	48	13						
32	58	16						
38	68	17						
51	88	20						
63	106	24						
76	120	26						
102	160	35						
127	190	42						
(2) 152	220	47						
,								

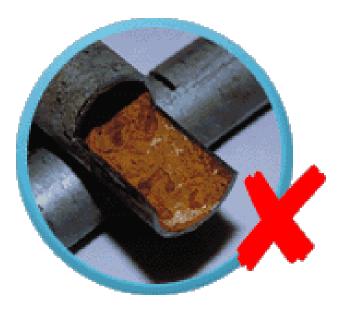
- Use Q = mcT, then mass flow of water is found
- Return pipe is sized accordingly

Worked Example

- Consider supply pipe size = 38mm (17W/m heat loss)
- Assume supply pipe length = $40m \rightarrow 680W$ heat loss
- If temperature drop = 6° C (from 65° C 59° C at end of supply)
- Q=mcT, thus $680 = m \times 4200 \times 6$, thus m = 0.026 kg/s
- Use smallest 12mm Cu pipe
- $0.026 \text{ kg/s} \rightarrow 130 \text{Pa/m} \text{ run} (0.013 \text{mH/m} \text{ run}) (acceptable)$
- Heat loss = 8 W/m x 40m = 320W
- Q = mcT, thus $320 = 0.026 \times 4200 \times T$, $T = 3^{\circ}C$ (in return)
- Thus return temp = 56° C (acceptable)


- Design & selection factors:
 - Effect on water quality
 - Cost, service life and maintenance needs
 - For metallic pipes, internal and external corrosion
 - Compatibility of materials
 - Ageing, fatigue and temperature effects, especially in plastics
 - Mechanical properties and durability
 - Vibration, stress or settlement
 - Internal water pressure


- Commonly used pipe materials, such as:
 - Copper (BS EN 1057)
 - Galvanised iron (GI) with PVC-C lining (BS 1387)
 - PVC, unplasticized PVC, PB, PE, PE-X
 - Stainless steel (BS 4127)
 - Ductile iron (BS EN 545) (for pipe dia. > 80 mm)
 - Mild steel (for pipe dia. > 600 mm)
- * Plastic material generally will degrade on prolonged exposure to ultra-voilet light


Copper pipe

Polyethylene pipe

Lined galvanized steel pipe

Rusty unlined galvanized steel pipe

(Source: Water Supplies Department, www.wsd.gov.hk)

Common pipe materials in fresh water plumbing systems

Pipe Material	Cold Water	Hot Water	Standards
Copper	✓	✓	BS EN 1057
Ductile iron	✓	✓	BS EN 545
Galvanised iron (GI) with PVC-C lining	✓	✓	BS 1387
GI with PVC-U/PE lining	✓	X	BS 1387
Polybutylene (PB)*	✓	✓	BS 7291
Polyethylene (PE)*	✓	X	BS 6572 (below ground)
	√	X	BS 6730 (above ground)
Chlorinated polyvinyl chloride (PVC-C)	✓	✓	BS 7291
Unplasticized polyvinyl chloride (PVC-U)	✓	X	BS 3505 Class D or above
Crosslinked polyethylene (PE-X)	✓	✓	BS 7291
Stainless steel	✓	✓	BS 4127

(Source: Water Supplies Department, www.wsd.gov.hk)

- Classification of pipe materials
 - Metallic
 - Copper
 - Stainless steel
 - Thermoplastics
 - PVC-U, PVC-C
 - Polyethylene (PE)
 - Medium Density Polyethylene (MDPE)
 - High Density Polyethylene (HDPE)
 - Crosslinked Polyethylene (PEX)

- Classification of pipe materials (cont'd)
 - Thermoplastics (cont'd)
 - Polybutylene (PB)
 - Acrylonitrile Butadiene Styrene (ABS)
 - Composite
 - Lined galvanised steel
 - Crosslinked Polyethylene/Aluminium/Crosslinked
 Polyethylene Composite Pressure Pipe (PEX-AL-PEX)
 - High Density Polyethylene/Alumnium/ High Density Polyethylene (HDPE-AL-HDPE)

- Copper pipes (BS EN 1057)
 - Advantages:
 - High pressure capability
 - Good formability
 - Good corrosion resistance
 - High strength & durability to withstand external loading
 - Ease of jointing (compression & capillary joints)
 - Smooth surface: low resistance to water flow
 - Suitable for conveying hot water
 - Disadvantages:
 - Soft water can cause internal corrosion attack (give rise to 'blue' water)

- Stainless steel (BS 4127)
 - Advantages:
 - High pressure capability
 - Good corrosion resistance
 - High strength & durability
 - Ease of jointing
 - Good resistance to accidental damage
 - Suitable for conveying hot water
 - <u>Disadvantage</u>:
 - More expensive than copper

- Lined galvanised steel
 - PVC-U/PVC-C/Polyethylene or epoxy resin lined
 - Advantages:
 - Good resistance to internal corrosion & encrustation
 - Smooth surface: lower resistance to water flow
 - Can be used in vulnerable conditions e.g. exposure to direct sunlight & traffic loads
 - Readily compatible with existing commonly used unlined steel pipe
 - Disadvantages:
 - Heavy weight
 - Susceptible to impact damage (great care in handling)
 - Higher skills required for cutting, threading, jointing

PVC-U (BS 3505 Class D)

Advantages:

- Good corrosion resistance
- Light weight, low cost
- Ease of jointing
- Smooth surface: low resistance to water flow
- Not a conductor of electricity (no galvanic/oxidative corrosion)

Disadvantages:

- Brittle, susceptible to impact damage
- Long drying time of solvent cement in jointing
- Low abrasion resistance
- Permeation/degradation by certain organic contaminants
- UV degradation on prolonged exposure to sunlight
- Not suitable for hot water supply

• PVC-C (BS 7291)

- Advantages:
 - Suitable for conveying hot water
 - Good corrosion resistance & chemical resistance
 - Light weight
 - Smooth surface: low resistance to water flow
 - Not a conductor of electricity (no galvanic/oxidative corrosion)
 - Can be connected to other materials easily

• Disadvantages:

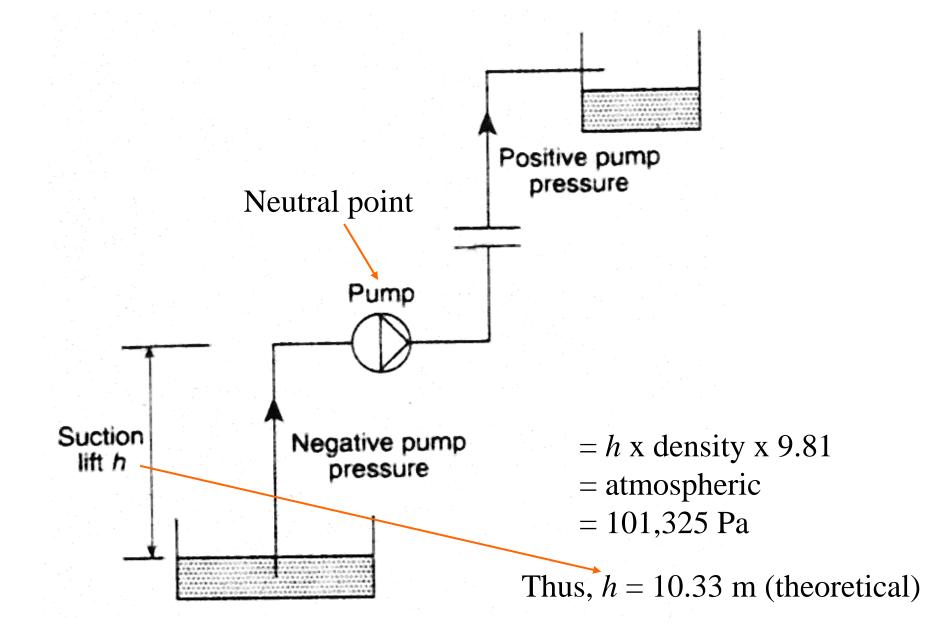
- Brittle, susceptible to impact damage
- Long drying time of solvent cement in jointing
- Can be flammable
- Reduction in strength & rigidity with increase of temperature
- Permeation/degradation by certain organic contaminants
- Can be attacked by detergents & oxidizing agents
- UV degradation on prolonged exposure to sunlight

MDPE (BS 7291)

- Advantages:
 - Good corrosion resistance
 - Good formability
 - Light weight
 - Fusion & mechanical joint available
 - Smooth surface: low resistance to water flow
 - Strong & tough
 - Flexible & durable, light & easy to handle
 - Good resistance to impact
- Disadvantages:
 - Fusion jointing requires skilled installers & special equipment
 - Subject to creep
 - Strength decrease with time (at a very slow rate)
 - UV degradation on prolonged exposure to sunlight
 - Permeation/degradation by certain inorganic & organic contaminants

- Jointing of pipes
 - Copper pipes
 - Capillary solder or brazed joints
 - Autogenous welding
 - Compression, push, press/crimp fittings
 - Steel pipes
 - Screwed joints, with pipe threads
 - Flange joints (screwed or welded flanges)
 - Stainless steel pipes
 - Compression, capillary, push, press/crimp fittings (but not joined by soft soldering)

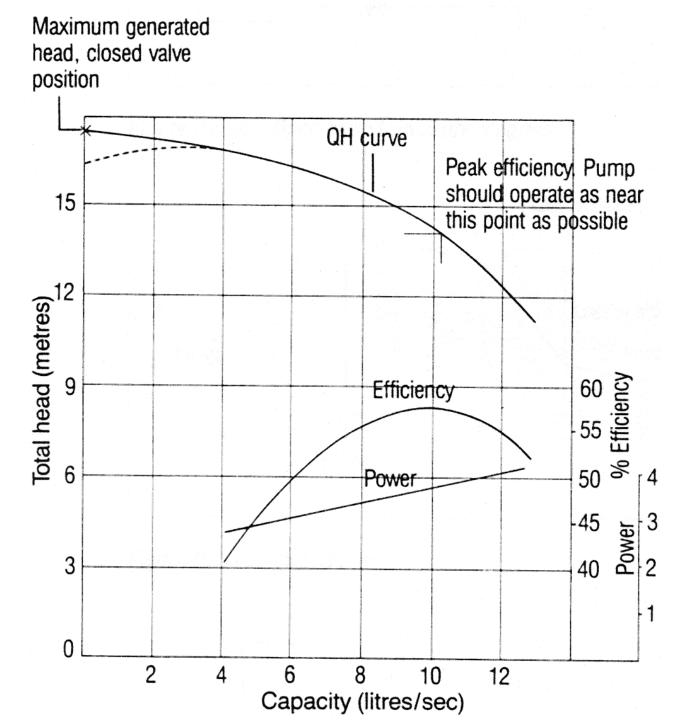
- Jointing of pipes (cont'd)
 - Unplasticized PVC pipes
 - Mechanical joints
 - Compression joints
 - Solvent cement welded joints
 - Flange joints
 - Polyethylene (PE) & polybutylene (PB) pipes
 - Mechanical joints (e.g. push-fit), thermal fusion
 - Acrylonitrile Butadiene Styrene (ABS) pipes
 - Similar to PVC-U pipes


Pump systems

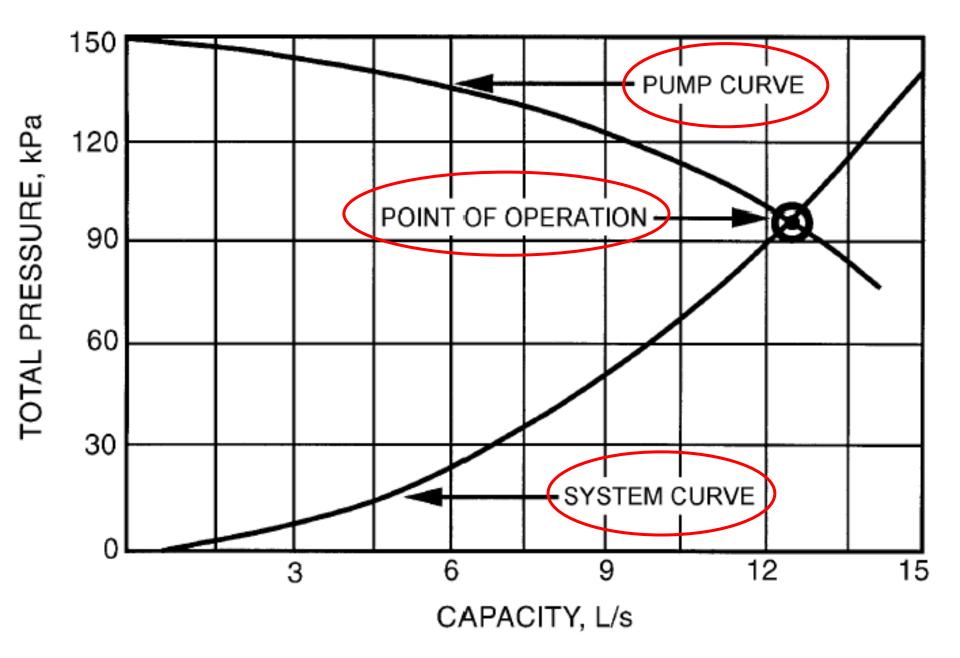
- Centrifugal pumps are commonly used
 - Vertical and horizontal
 - Single & multiple stages
- Two types of systems:
 - Closed systems
 - Recirculation
 - Example: hot water secondary circuit
 - Open systems
 - Open to atmosphere
 - Example: cold water gravity feed

Main characteristics of centrifugal & positive displacement pumps

Centrifugal pumps	Positive displacement pumps
 Capacity varies with head Capacity proportional to pump speed Head proportional to the square of pump speed Non self-priming Suitable for low-viscosity liquid 	 Capacity substantially independent of head Capacity proportional to speed Self-priming Suitable for various liquids (reduced speeds usually necessary for high viscosity


Pump pressure effects in an open system

Pump systems

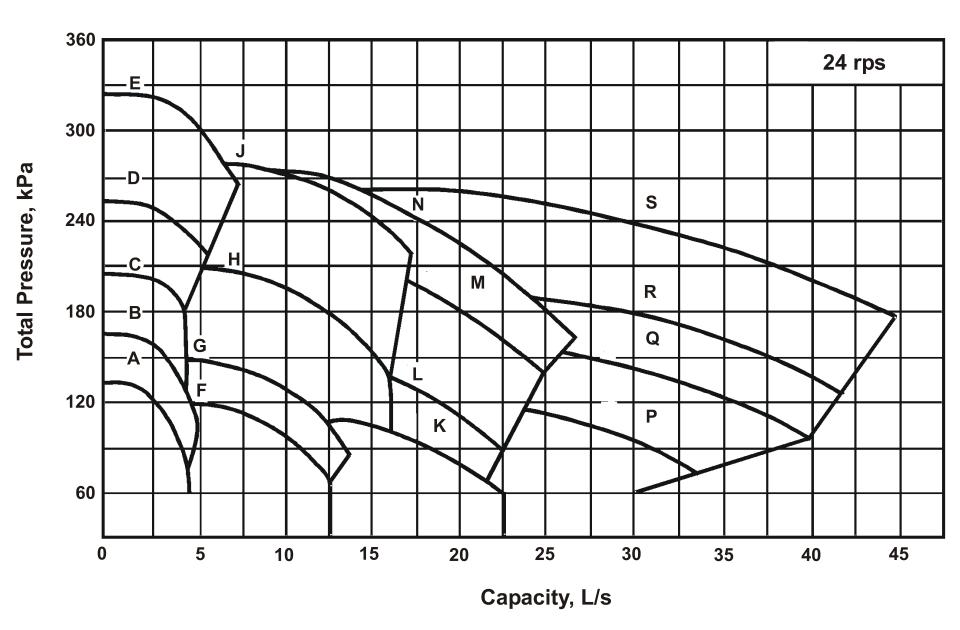

- Pump considerations
 - Practical suction lift is 5 m maximum
 - Also known as net positive suction head (NPSH)
- Pump location is important for both closed and open systems
 - Open system: not excessive to avoid cavitation
 - <u>Close system</u>: Influence water level of open vent pipe & the magnitude of anti-flash margin (temp. difference between water & its saturation temp.)
 - 'Self-priming' to evacuate air from suction line

Pump systems

- Pump characteristics
 - Characteristics curves (e.g. from catalogue):
 - Flow $(m^3/s, L/s)$
 - Total head (mH, kPa)
 - Power (W, kW)
 - Efficiency (%)
 - No-flow conditions (flow = zero)
 - Close valve pressure
 - Need to prevent over-heat as pump power is continuously added to the fluid
 - Pump power (W) = flow (m^3/s) x pressure (Pa)

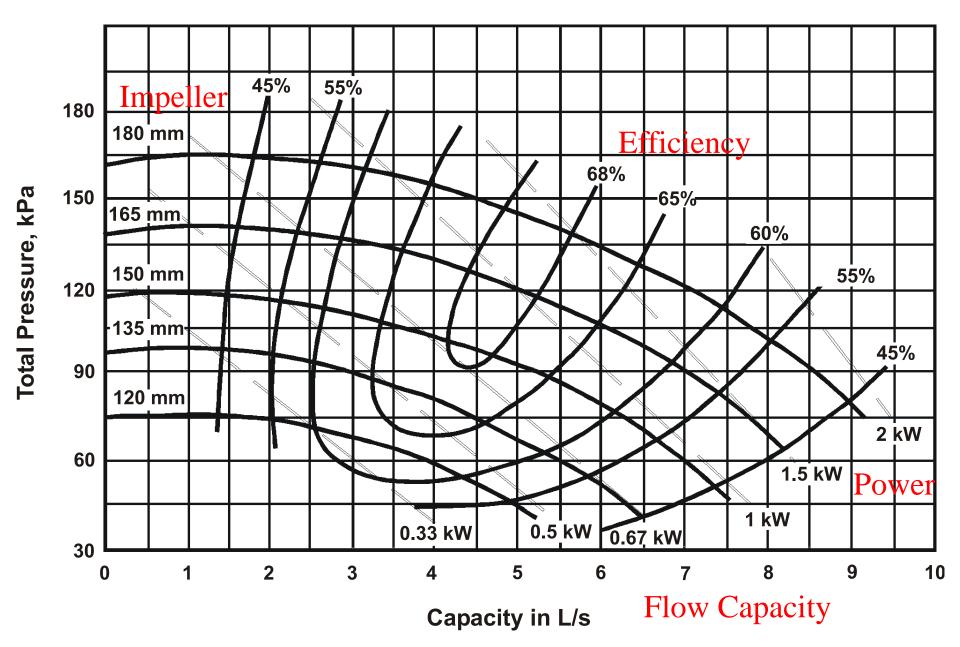
Pump characteristics curves (centrifugal)

Pump Curve


- A characteristics of the pump alone (with particular impeller size and configuration)
- At a certain flow rate, the pump delivers a certain pressure

System Curve

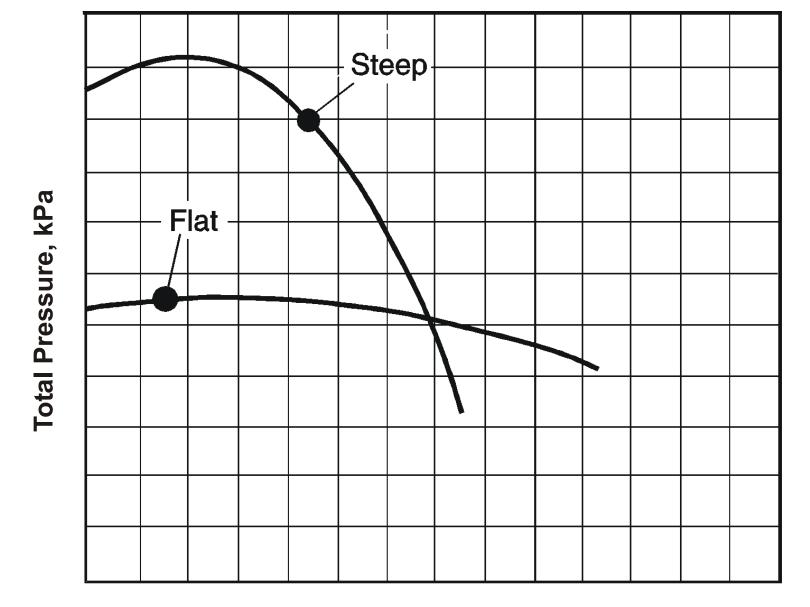
- A characteristics of the piping network (without the pump) relating the flowrate and the head loss
- Usually in the form $P = h + kQ^2$


Point of Operation

- Intersecting point between pump curve and system curve
- At the same flow, the pump pressure just compensates the system head loss

Characteristic curves for pump models

(Source: Fundamentals of Water System Design)


Selected pump pressure-capacity curve

(Source: Fundamentals of Water System Design)

Pump systems

- Pump characteristics (cont'd)
 - Pumps with steep characteristics
 - Change in pressure \rightarrow small change in flow rate
 - Useful where pipes tend to scale up
 - Pumps with flat characteristics
 - Change in flow \rightarrow small change in pressure
 - Useful where extensive hydraulic balancing is needed

Capacity, L/s

Flat versus steep pump curves

(Source: Fundamentals of Water System Design)

Pump systems

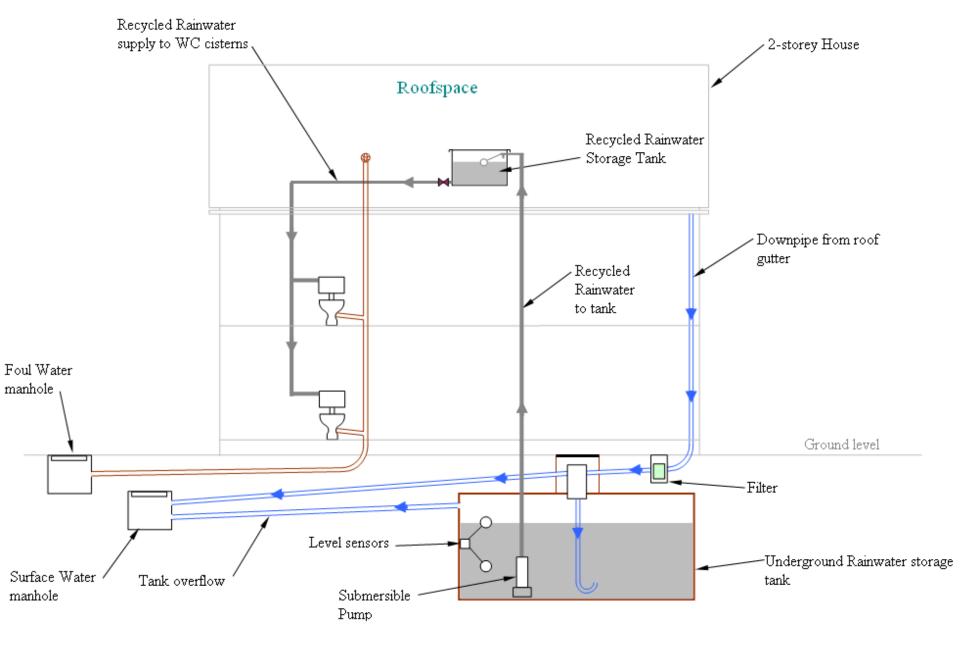
- Pump characteristics (cont'd)
 - Constant Speed vs Variable Speed
 - Pumps with constant speed cannot respond to changes in load
 - Require a bypass or a pipe restriction (e.g. a valve) to adjust the flow
 - Variable speed pumps
 - Rotation speed reduces thus 'point of operation' changes
 - Provides for savings in pumping costs during partial load
 - Pump materials to suit the environment, e.g. stainless steel pumps for salt water system

- Noise & vibration
 - Pipe noise
 - Pipe should not be fixed rigidly to lightweight panels
 - Flow noise
 - Keep velocities under control
 - Pump noise
 - Use rubber hose isolators, resilient inserts, acoustic filters

- Water hammer
 - Such as when a valve is closed rapidly
 - Pulsating type of noise by shock waves
 - Preventive measures:
 - Prevent sudden closing of the valve
 - Absorb pressure peaks (e.g. by pneumatic vessels)
 - Increase the attenuation of pressure waves when transmitted through the pipework
 - Design the pipework to avoid long straight pipe runs
 - Restrict water velocities (e.g. to a maximum of 3 m/s)

- Back siphonage
 - Occur when water mains pressure reduce greatly
 - Contamination of water may happen
 - Contamination might also occur due to gravity & backpressure backflow
 - Anti-siphonage device and design precautions

- Water economy & energy conservation
 - Economy of water
 - A key factor in the design (to conserve water)
 - Measures:
 - Detect water leakage
 - Reduce water consumption
 - Reuse or recycle water
 - Energy conservation
 - Insulation of hot water pipe, fittings & vessels
 - Use of fresh water for cooling tower make-up



- Water efficiency labeling scheme
- Water saving devices
 - Low-flow showerheads
 - Taps with flow restrictors
 - Flow control valves
 - Washing machines & dish-washers with high water efficiency
 - Water plugs, self-closing taps, spray taps, aerators, etc.

- Water conservation (flushing water)
 - Low-water and pressure flushing cisterns
 - Dual-flush toilet cisterns
 - Urinal controls
- Water reuse and recycling
 - Rainwater reuse/recycling
 - Grey water recycling

Example: Rainwater recycling system for house

81

End of Session