## Calculation of Cooling Tower Performance and Required Fill Height

The tower coefficient is presented by the equation
$\frac{K a V}{\dot{m}_{w}}=C+H \dot{m}_{w}^{n}+\dot{m}_{a}^{m}$ or similar presentation.

Assume the performance of a particular cooling tower design follows the empirical equation: $\frac{K a V}{\dot{m}_{w}}=0.02+0.1 H\left(\frac{\dot{m}_{w}}{\dot{m}_{a}}\right)^{-0.6}$ at 'water to air' mass ratio $=1.2$

Consider a chiller plant system (cooling capacity 500 kW ) with COP at 4.5 is designed with a cooling tower, the design entering and leaving condenser water temperature of the cooling tower are $37^{\circ} \mathrm{C}$ and $32^{\circ} \mathrm{C}$ respectively, the design wet bulb temperature of the outdoor air is $28^{\circ} \mathrm{C}$ (concurrent dry-bulb $33.5^{\circ} \mathrm{C}$ ), what are:
a) the cooling tower coefficient
b) the required condenser water and air mass rate (in $\mathrm{kg} / \mathrm{s}$ ) in the cooling tower
c) the required height of the fill

## Solution

a)

As the air and water temperature are not changing linearly, the entering / leaving water temperature should be cut down into small steps of, e.g. $1^{\circ} \mathrm{C} / 1 \mathrm{~K}$, in an iteration process to determine the heat transfer in each step.

The changing enthalpy of air in each step $d h_{a}$ can be derived from the heat balance equation:
$\dot{m}_{w} c_{p w} d T_{w}=\dot{m}_{a} d h_{a}$

At $\dot{m}_{w} / \dot{m}_{a}=1.2, c_{p w}=4.18 \mathrm{~kJ} / \mathrm{kgK}, d T_{w}=1 \mathrm{~K}$
$d h_{a}=1.2 \times 4.18=5.0 \mathrm{~kJ} / \mathrm{kg}$

A table indicating the cumulative heat transfer is presented as shown:

| Water <br> Temperature <br> $t$ <br> ${ }^{\circ} \mathrm{C}$ | Enthalpy of Film ${ }^{1}$ $h_{s}$ $\mathrm{kJ} / \mathrm{kg}$ | $\begin{gathered} \hline \text { Enthalpy } \\ \text { of Air }^{2} \\ h_{a} \\ \mathrm{~kJ} / \mathrm{kg} \\ \hline \end{gathered}$ | Enthalpy Difference $h^{\prime}-h_{a}$ <br> kJ/kg | $\begin{gathered} \frac{1}{\left(h^{\prime}-h_{a}\right)} \\ \mathrm{kg} / \mathrm{KJ} \end{gathered}$ | $\Delta t$ K | $\begin{gathered} \mathrm{NTU}= \\ \frac{\Delta t}{\left(h^{\prime}-h_{a}\right)_{a v g}} \end{gathered}$ | $\sum N T U$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | 111.0 | $\quad 90.0$ $\left(33.5^{\circ} \mathrm{C} \mathrm{DB}\right)$ $\left(28^{\circ} \mathrm{C}\right.$ WB $)$ | 21.0 | 0.0476 | 1 |  |  |
|  |  |  |  |  |  | 0.0467 | 0.0467 |
| 33 | 116.9 | 95.0 | 21.9 | 0.0457 | 1 |  |  |
|  |  |  |  |  |  | 0.0446 | 0.0913 |
| 34 | 123.0 | 100.0 | 23.0 | 0.0435 | 1 |  |  |
|  |  |  |  |  |  | 0.0422 | 0.1335 |
| 35 | 129.5 | 105.0 | 24.5 | 0.0408 | 1 |  |  |
|  |  |  |  |  |  | 0.0395 | 0.1730 |
| 36 | 136.2 | 110.0 | 26.2 | 0.0382 | 1 |  |  |
|  |  |  |  |  |  | 0.0368 | 0.2098 |
| 37 | 143.3 | 115.0 | 28.3 | 0.0353 | 1 |  |  |

Note:

1. Enthalpy of saturated air film at different temperature obtained from thermodynamic tables of moist air.
2. Enthalpy of air starts at $28^{\circ} \mathrm{C} \mathrm{WB}=90.0 \mathrm{~kJ} / \mathrm{kg}$ and then increases by $5.0 \mathrm{~kJ} / \mathrm{kg}$ per 1 K increase in water temperature.

The tower coefficient NTU is calculated to be 0.210 .
b)

The required condenser water can be obtained from the actual heat to be rejected at the cooling tower.
The chiller has a cooling capacity of 500 kW and the COP is 4.5 .
The work input for the compressor $=500 \mathrm{~kW} / 4.5=111 \mathrm{~kW}$
Total heat to be rejected $=(500+111) \mathrm{kW}=611 \mathrm{~kW}$
The mass flow of condenser water can be calculated:
$Q=\dot{m}_{w} c_{p w}\left(T_{w l}-T_{w e}\right)$
$611 \mathrm{~kW}=\dot{m}_{w} \times 4.18 \mathrm{~kJ} / \mathrm{kgK} \times(37-32)^{\circ} \mathrm{C}$
$\dot{m}_{w}=29.2 \mathrm{~kg} / \mathrm{s}$
Thus
$\dot{m}_{a}=(29.2 / 1.2) \mathrm{kg} / \mathrm{s}=24.3 \mathrm{~kg} / \mathrm{s}$
The leaving air is near to saturation at $115 \mathrm{~kJ} / \mathrm{kg}$. From the psychrometric chart, the air temperature is approximately $32.7^{\circ} \mathrm{C}$ when leaving the condenser.
c)

The height of the fill can be obtained from the equation
$\frac{K a V}{\dot{m}_{w}}=0.02+0.1 H\left(\frac{\dot{m}_{w}}{\dot{m}_{a}}\right)^{-0.6}$
$0.210=0.02+0.1 H(1.2)^{-0.6}$
$H=2.1 \mathrm{~m}$

