Space Air Diffusion II

Ir. Dr. Sam C. M. Hui
Visiting Assistant Professor
Department of Mechanical Engineering
The University of Hong Kong
E-mail: cmhui@hku.hk

Aug 2016
Contents

• Cold Air Distribution
• Displacement Flow
• Underfloor Air Distribution
• Unidirectional Flow
• Projecting Flow
• Air Flow Analysis
Cold Air Distribution

- Lower supply air temp. = 4.4 to 7.2 °C
- Conventional air distribution = 12.7 to 15.0 °C
- Applied mainly in conjunction with ice storage systems
 - Lower chw temp. (1.1 to 2.2 °C) (from ice storage)
- Main advantages:
 - Reduce design supply volume flow (larger ΔT)
 - Air-side components can be downsized
 - Fan energy use can be reduced
 - Reduced fan sound levels
- Drawbacks: dumping of cold air jet & IAQ issues
Cold Air Distribution

• Design considerations
 • Condensation
 • Cooled surfaces shall be well insulated & sealed
 • Comfort
 • Air supplied at lower velocities: diffuser performance is affected (e.g. dumping & stagnant at low load)
 • Indoor air quality
 • Minimum ventilation flow is required; may need reheat
 • Controls
 • Start-up & shut-down, humidity controls, VAV, etc.
Cold Air Distribution

- Two methods for cold air space diffusion
 - High induction nozzle diffusers
 - Direct from AHU or package unit
 - Fan-powered VAV boxes
 - Mix low-temperature supply air with return air before supplied to the conditioned space

- Characteristics of cold air distribution
 - Higher $\sqrt{A_r / D_o}$ value
 - Higher supply air velocity & jet turbulence
 - Good surface effect (adequate throw, small drop)
 - ADPI \geq 80 at both design & reduced airflow
Series flow fan power terminal

Cold Supply Air

Warm Plenum Air

Uniform Discharge Air Temperature

(Source: http://www.price-hvac.com)
Cold Air Distribution

• Design checks
 • Performance of ceiling & slot diffusers
 • Any difference compared with conventional system?
 • Fan-powered VAV boxes
 • In parallel or in series
 • Mixing w/ return air to get suitable supply temp.
 • Provide space air movement
 • Higher noise & more maintenance
 • Surface condensation
 • Sufficient thermal insulation is needed to prevent this
Displacement Flow

• Displacement flow
 • Cold supply air at a velocity nearly equal to the required velocity and displace the original air with piston-like airflow w/o mixing
 • If properly designed, it can give:
 • Better IAQ in occupied zone
 • Higher space diffusion effectiveness
 • Low turbulence intensities & fewer draft problems
 • Drawbacks:
 • Require greater supply volume flow rate
 • Higher construction cost
Displacement ventilation (DV)
Mixing ventilation (MV)
Typical displacement ventilation room layout
Displacement flow characteristics
(Source: http://www.price-hvac.com)
Displacement ventilation system
Displacement Flow

• Airflow patterns
 • Because of low discharge velocity, air motion is influenced to a large degree by convection flows
 • Convection flows (or thermal plumes) are created by heat sources, e.g. people, equipment, warm windows
 • Cold sinks (e.g. cold windows) may create flows down

• Airflow penetration
 • Supply air spread across the floor in a thin layer, filling the entire space
 • Flow around & beyond obstructions
Displacement flow patterns
(Source: http://www.price-hvac.com)
Figure 7 - Obstruction

Figure 8 - Irregular Room Geometry

Airflow penetration
(Source: http://www.price-hvac.com)
Displacement Flow

- Diffuser airflow patterns
 - To avoid draft, displacement diffuser shall deliver the supply air uniformly at low velocity
 - With internal equalization baffle & low free area face
 - For cool air supply, it will falls towards the floor
 - For isothermal air, it will distribute horizontally
 - For heated air, the discharge air will rise
 - Therefore, it is not recommended to supply heated air
Displacement diffuser airflow pattern
(Source: http://www.price-hvac.com)
Displacement Flow

- Contaminant distribution
 - Can reduce contaminant in lower portion of room
 - Actual distribution is influenced by factors e.g. contaminant source type & location, human body convection and space height, strength of thermal plume

- Ventilation effectiveness
 - Displacement can achieve around 1.2-1.4; most mixing systems is around 1.0
Figure 12 - Contaminant Distribution

Ref: REHVA Guidebook

(Source: http://www.price-hvac.com)
Displacement Flow

- Temperature distribution
 - Temperature gradient between the floor & ceiling
 - Also known as “Stratification”
 - Affected by factors e.g. supply air volume, room cooling load, location & type of heat source, height of the space
- Controlling stratification is critical to maintain thermal comfort
- If heating is needed, may use radiator to offset cold downdrafts near the windows
Displacement ventilation – temperature gradient

(Source: http://www.price-hvac.com)
Displacement ventilation – temperature gradient

(Source: http://www.price-hvac.com)
Displacement ventilation and radiator
(Source: http://www.price-hvac.com)
Displacement Flow

- Stratified displacement flow
 - First introduced in Scandinavian countries
 - Low-level supply outlet
 - Above heat & contaminated sources
 - Heated air rises upward due to buoyancy effect
 - Supply air is entrained into the upward convective flow
 - Stationary level: upward flow = supply flow
 - Two-zone stratified model: upper zone & lower zone
Stratified displacement flow in a typical room
Displacement Flow

- Characteristics of stratified displacement flow
 - Cold air supply of usually 100% outdoor air
 - Air must be supplied at low velocity (< 0.3 m/s) & at a height less than 0.54 m above floor
 - Cold air supplied at 2.8 to 5 °C lower than occupied zone
 - Height of lower zone shall be higher than a seated occupant (1.4 m); all air is supply air in lower zone
 - Smaller cooling load density (max. 41 W/m²)
 - Return or exhaust inlets located near ceiling level
Displacement Flow

- Design procedure
 - Step 1: determine summer cooling load
 - Occupants, lights, equipment, envelope
 - Step 2: determine cooling load ventilation flow rate
 - Equation from the ASHRAE design guide
 - Step 3: determine flow rate of fresh air
 - Step 4: determine supply air flow rate
 - Max \{Step 2, Step 3\} flow rates
 - Step 5: determine supply air temperature
 - Step 6: determine exhaust air temperature
Displacement Flow

- Common diffuser types
 - Rectangular units
 - Corner units
 - Semi-circular units
 - Circular units
 - Floor mounted units
Underfloor Air Distribution

• Upward flow underfloor air distribution
 • Conditioned air from floor plenum (0.3-0.45 m)
 • Usually ductless (air duct has also been used in the past)
 • Supply outlets
 • Floor diffusers, fan-driven units, desktop units, supply outlets from fan coil units and water-source heat pumps
 • Often partial displacement & partial mixing
• Cool primary air from AHU
• Applications of underfloor air distribution
 • Computer rooms air conditioning
 • Commercial buildings (w/ access raised floor systems)
Upward flow underfloor air distribution system
Underfloor air supply

(Source: http://www.price-hvac.com)
Underfloor air distribution system

(Source: ASHRAE Underfloor Air Distribution Design Guide)
Office space with underfloor air distribution & task air-conditioning

(Source: ASHRAE Underfloor Air Distribution Design Guide)
Installation of raised floor system in open plan office
(Source: ASHRAE Underfloor Air Distribution Design Guide)
Underfloor Air Distribution

• Design factors of underfloor air distribution
 • Thermal storage of floor plenum
 • Primary air in direct contact with concrete floor slab
 • Heat unneutralised
 • Upward air flow lifts the heat unneutralised to ceiling
 • Greater capability to capture/exhaust heat thru’ ceiling
 • Maintaining a consistent access plenum temp.
 • Blending air for suitable temperature; travel distance
 • Master zone air temp. control
 • Important for VAV system to response to load changes
Underfloor Air Distribution

• Advantages of underfloor air distribution
 • Integrated well with raised floor plenum
 • Can be very flexible for future changes/relocations
 • Conditioned air is supplied directly to occupants
 • Stagnant air can be reduced (if ceiling return)
 • Upward flow lifts some unneutralised heat
 • It can utilise thermal mass of access floor & slab to reduce peak demands

• Disadvantages
 • Higher initial costs
 • Need for raised floor system & floor diffusers
Overhead VAV Distribution

- floor slab
- ceiling plenum
- Coanda effect for mixing
- 55°F (13°C)
- uniform space temperature, 75°F (24°C)
- wiring access

Displacement Ventilation

- floor slab
- VAV terminal
- 85°F (29°C)
- Requires high ceiling to limit “nose-to-toes” stratification to 5°F (3°C)
- 77°F (25°C)
- stratification layer
- 73°F (23°C)
- 65°F (18°C)
- typically 12 ft (3.6 m) or more
“Partial” Displacement Ventilation (Underfloor Air Distribution)

- Floor slab
- Ceiling plenum
- 82°F (28°C)
- Stratification layer
- Uniformly 75°F (24°C)
- 65°F (18°C)
- Diffuser

12 ft (3.6 m) or less

(Source: UC Berkeley)
Comparison of typical vertical temperature profiles

(Source: ASHRAE Underfloor Air Distribution Design Guide)
References

• ASHRAE design guides:
 • ASHRAE, 2013. *UFAD Guide: Design Construction and Operation of Underfloor Air Distribution Systems*

• Suppliers information:
 • http://www.priceindustries.com
 • http://www.flexiblespace.com
Unidirectional Flow

- Unidirectional flow
 - Airstream flows in the same direction as uniform airflow showers the entire working area or occupied zone (known as “laminar flow”)
- Examples:
 - Clean rooms (downward or horizontal flow)
 - Ventilating or perforated ceiling
- Advantages:
 - Contaminants generated cannot move laterally
 - Dust particles will not be carried to higher levels
Unidirectional flow for clean rooms

Ventilating ceiling

Ventilating ceiling: an example for kitchen

(Source: http://www.reven.de)
Unidirectional Flow

• Ceiling plenum & supply air velocity
 • To create a more uniform supply air velocity, the max. air velocity inside the ventilating ceiling plenum shall be low
 • If sufficient plenum height & few obstructions, distributing ductwork inside is not needed

• Applications of ventilating ceiling
 • Industrial process
 • Indoor sports stadium for badminton (＜0.2 m/s)
Unidirectional Flow

- Hospital applications (more critical)
 - Main purpose: control of airborne contaminants
 - Such as operating theatre and isolation wards
- Operating theatre
 - Large fresh air ventilation (100% outdoor air)
 - Large volume of supply air
 - At low uniform velocity to promote stable downward flow of air
Flow patterns in hospital operating theatre

Laminar flow - full ceiling supply

Laminar flow - partial ceiling supply

(Source: http://www.price-hvac.com)
Hospital operating theatre (laminar flow with air curtains)

(Source: http://www.price-hvac.com)
Hospital operating theatre (typical design)
(Source: http://www.price-hvac.com)
Hospital operating theatre (typical design)

(Source: http://www.price-hvac.com)
Unidirectional Flow

- Hospital applications - isolation wards
 - Infectious isolation rooms
 - Patients with infectious diseases
 - Kept at a **negative pressure**
 - Protective isolation rooms
 - Patients with a high susceptibility to infection
 - Kept at a **positive pressure**
 - HEPA filters will be used
 - Ante rooms are recommended to minimize exchange of air between a hallway and the isolation room
 - Airflow pattern: protect health care staff or patient
Diagram #1 - Infectious Isolation Room

Infectious isolation room

(Source: http://www.price-hvac.com)
Diagram #2 - Protective Isolation Room

Protecive isolation room

(Source: http://www.price-hvac.com)
SARS test chamber (inside HKU BSE Lab)
Projecting Flow

- Cold or warm air jet projected to target zone
- Benefits of projecting flow
 - Better control of temp., air cleanliness & air movement in a localised environment
 - Spot cooling improve occupants’ thermal conditions & reduce heat stress
 - Greater direct outdoor air supply
 - Direct & efficient handling of local loads
 - Greater control of their own micro-environment
Projecting Flow

- Disadvantages of projecting flow
 - Draft discomfort or pressure air jet
 - Limited area of environmental control
 - More complicated space air diffusion design
- Usually free jets with high entrainment ratios
 - Long-throat round nozzles are often used
- Two types of projecting flow
 - Industrial spot cooling systems
 - Desktop task air conditioning systems
Industrial spot cooling system Desktop task air conditioning

Projecting Flow

- Industrial spot cooling systems
 - Temperature difference between target zone & the room air is often 2.8 °C or greater
 - Distance between target zone & supply outlet
 - Vertical vs horizontal jet
 - Target velocities
 - Thermal sensation
 - Of whole body & for individual parts (local)
 - Allow occupants to have individual control
Projecting Flow

• Desktop task conditioning systems
 • Also task/ambient conditioning (TAC)
 • Typical design: self-powered mixing box, small supply fans, desktop supply outlets (nozzles), flexible ducts + control panel
 • Also integration with furniture or partitions
 • Advantages:
 • Allow occupants to fine-tune the local environment
 • Possible to off the unit when unoccupied to save energy
 • Direct supply of primary air to occupants
Figure 5.1 UFAD and TAC diffuser locations in a workstation.

(Source: ASHRAE Underfloor Air Distribution Design Guide)
Figure 5.12 Underdesk TAC supply unit [Johnson Controls 2002].

(Source: ASHRAE Underfloor Air Distribution Design Guide)
Air Flow Analysis

- Computational fluid dynamics (CFD)*
 - Computing technique for analysis & prediction of fluid motion and heat transfer
 - Using Navier-Stokes & thermal equations
 - Become more and more popular for study of air flow patterns, indoor temperature distribution & indoor contaminants
 - Useful tool for studying space air diffusion

* Video: Computational Fluid Dynamics (CFD) (3:32) https://www.youtube.com/watch?v=hzTCCcsOTg8
http://www.learnengineering.org/2013/05/What-is-CFD-computational-fluid-dynamics.html
CFD visualisation – temp. distribution (St. James Theatre, Australia)

(Source: Dr. Yuguo Li, Dept of Mech Engg, HKU)
CFD visualisation – temp. distribution (Sydney Fruit Market)

(Source: Dr. Yuguo Li, Dept of Mech Engg, HKU)
Computational fluid dynamics (CFD) applied to airflow study

(Source: http://www.fluent.com/)
CFD applied to naturally ventilated buildings

(Source: http://www.flovent.com)
CFD applied to data centre design study

(Source: http://www.flovent.com)
Air Flow Analysis

• Computational fluid dynamics (CFD)
 • Turbulence modelling methods
 • Correlations, e.g. drag as a function of Re
 • Integral methods
 • Reynolds average models (κ-ε models)
 • Large eddy simulation (LES)
 • Direct numerical simulation (DNS)
 • Time average Navier-Stokes equations*
 • Incompressible form of the momentum equation
 • Full and general set of partial differential equations governing fluid motion

* Video: Computational Fluid Dynamics (CFD) | RANS & FVM (5:21) https://www.youtube.com/watch?v=YGuLvNWKk2k
http://www.learnengineering.org/2013/05/computational-fluid-dynamics-rans-fvm.html
Air Flow Analysis

- **Computational fluid dynamics (CFD)**
- **Governing equations:**
 - **Mass balance:** \[
 \frac{\partial \rho}{\partial t} + \frac{\partial (\rho U)}{\partial x} + \frac{\partial (\rho V)}{\partial y} + \frac{\partial (\rho W)}{\partial z} = 0
 \]
 - **Momentum:** \[
 \frac{\partial (\rho U)}{\partial t} + \frac{\partial (\rho UU)}{\partial x} + \frac{\partial (\rho UV)}{\partial y} + \frac{\partial (\rho UW)}{\partial z} = -\frac{\partial P}{\partial x} + \frac{\partial (\mu \frac{\partial U}{\partial x})}{\partial x} + \frac{\partial (\mu \frac{\partial U}{\partial y})}{\partial y} + \frac{\partial (\mu \frac{\partial U}{\partial z})}{\partial z} + \frac{1}{3} \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} \right) \right] + \rho g_x
 \]
 - **Energy:** \[
 \frac{\partial (\rho T^*)}{\partial t} + \frac{\partial (\rho U T^*)}{\partial x} + \frac{\partial (\rho V T^*)}{\partial y} + \frac{\partial (\rho W T^*)}{\partial z} = \frac{\partial}{\partial x} \left(\Gamma \frac{\partial T^*}{\partial x} \right) + \frac{\partial}{\partial y} \left(\Gamma \frac{\partial T^*}{\partial y} \right) + \frac{\partial}{\partial z} \left(\Gamma \frac{\partial T^*}{\partial z} \right)
 \]

- **Fluid density (\(\rho\))**
- **Velocity (\(U, V, W\))**
- **Viscosity (\(\mu\))**
- **Temperature (\(T^*\))**
- **Diffusivity (\(\Gamma\))**
References

• The Basics of Computational Fluid Dynamics Modeling

• Navier-Stokes Equations (Foundations of Fluid Mechanics)
 • http://www.navier-stokes.net/

• FLOVENT Applications
 • http://www.flovent.com/applications/