MEBS6016 Energy Performance of Buildings http://me.hku.hk/bse/MEBS6016/

Energy Efficiency in Buildings (II)

Dr. Sam C. M. Hui Department of Mechanical Engineering The University of Hong Kong E-mail: cmhui@hku.hk

Dec 2013

Building Energy Design

Building Operation and Energy Management

• Energy Performance Contracting

- "An energy efficient building provides the required internal environment and services with <u>minimum</u> energy use in a <u>cost effective</u> and <u>environmentally sensitive</u> manner." *CIBSE Guide F: Energy Efficiency in Building*
 - Design energy efficient new buildings and refurbishment of existing buildings
 - Manage and operate buildings in an energy efficient way; Upgrade buildings to improve ongoing energy efficiency

• Principles of energy efficiency (1)

- 1. Integrated building design
 - Design the most energy efficient buildings and services possible. Provide holistic designs which are responsive to the external climate whilst still meeting the needs of the occupants
- 2. The energy efficient brief
 - Ensure the client's brief includes energy efficient criteria and targets for all buildings, new or refurbished. Review the project in relation to these targets and criteria as the design progresses

• Principles of energy efficiency (2)

EP

- <u>3. Benchmarking</u>
 - Compare designs and in-use performance of buildings with appropriate benchmarks to ensure that best practice energy efficiency is being achieved
- 4. The integrated design team
 - Work with other members of the design team in order to optimise building energy performance (to avoid fragmented efforts)

• Principles of energy efficiency (3)

- <u>5. Reduce demand</u>
 - Keep energy demand to a minimum through careful design of built form and services using renewable energy sources, ambient energy and passive solutions. Make every effort to avoid the need for air conditioning
- 6. Design for operation
 - Design for commissionability, maintainability and manageability by keeping solutions simple and eliminating potential failure pathways

- Principles of energy efficiency (4)
 - <u>7. Optimise plant</u>
 - Select the most efficient plant, using certified or otherwise independently verified product performance data, and ensure that plant and equipment are not oversized
 - <u>8. Use effective controls</u>
 - Introduce energy efficient controls which operate systems efficiently, safely and economically, whilst still allowing individual occupants to alter their own comfort levels, but avoiding systems defaulting to 'on'

• Principles of energy efficiency (5)

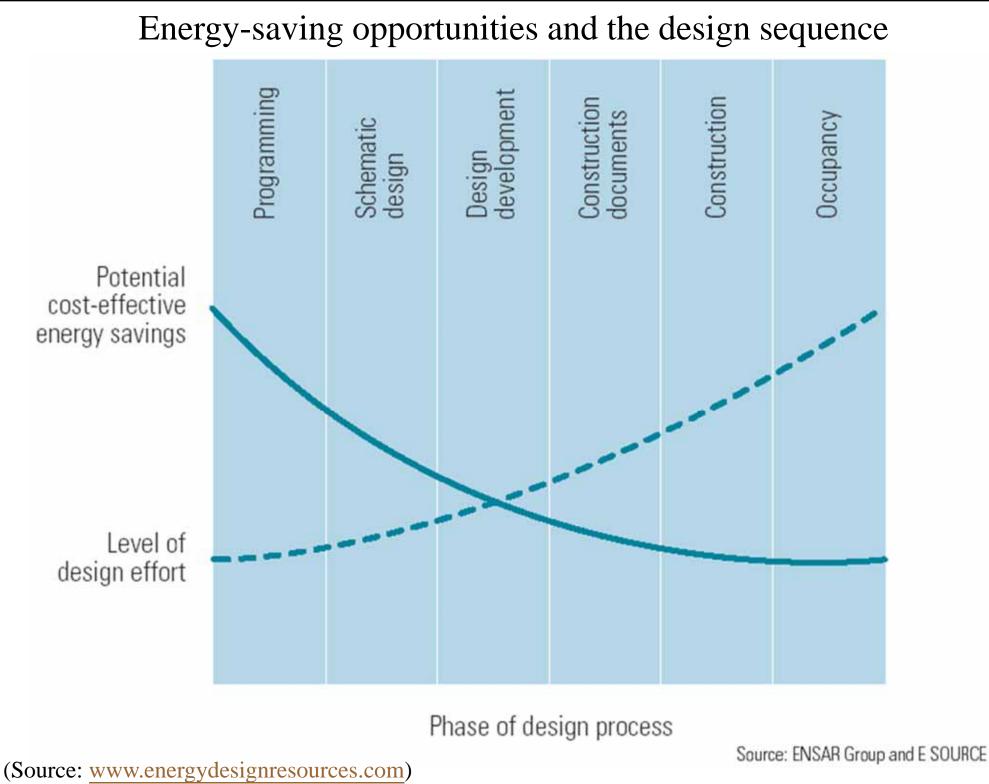
E

- 9. Ensure complete handover
 - Ensure that building services systems are properly commissioned and handed over to managers, operators and occupants
- <u>10. Improve operation</u>
 - Encourage energy efficient operation of buildings through management, policy, maintenance, monitoring and control

• Principles of energy efficiency (6)

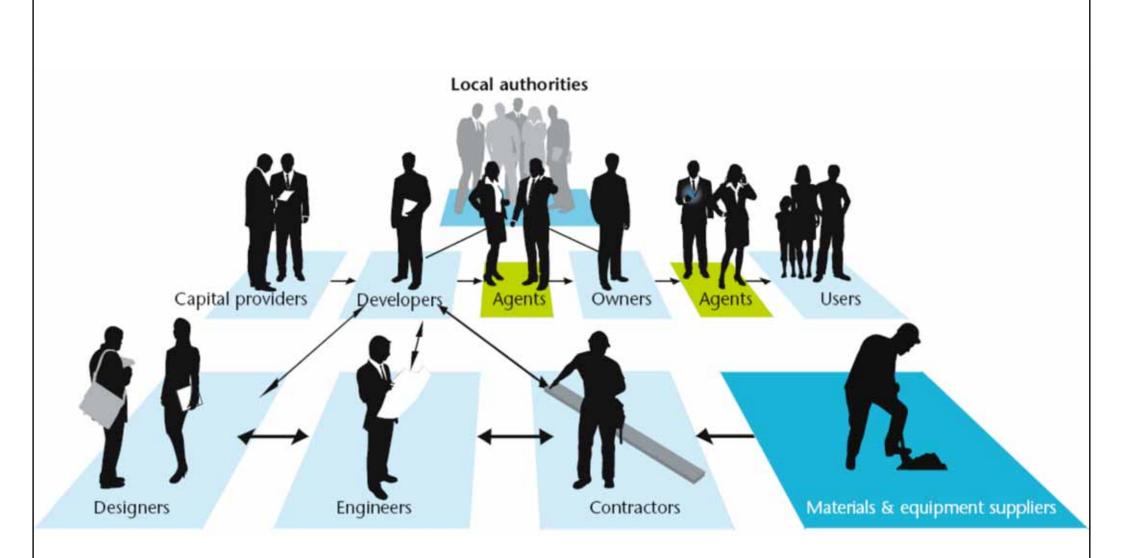
- <u>11. Understanding the building</u>
 - Provide managers, engineers, operators and occupants with suitable documentation to ensure they understand the design intention and how the buildings are meant to function
- <u>12. Monitoring and feedback</u>
 - Develop a strong element of feedback to improve understanding from previous good and bad experience related to these principles. Introduce appropriate metering to improve info. and to detect faults rapidly

- Principles of energy efficiency (7)
 - <u>13. Build-in energy efficiency</u>
 - Always consider introducing energy efficient technologies throughout the design and upgrade processes but avoid unnecessary complications. Seek opportunities for improving existing buildings during operation, maintenance, alteration and refurbishment
 - <u>14. Environmental impact</u>
 - Minimise adverse effects on the external environment. Minimise emissions and select environmentally friendly materials and fuels, utilising renewable sources as much as possible


- Investing in energy efficiency
 - Improve the overall environmental performance
 - In response to an overall environmental policy laid down by senior management or as a result of government initiatives in the public sector
 - Can significantly enhance corporate image which may influence future investors
 - Cost savings and savings in operating costs
 - May also be justified for environmental reasons e.g. green building design & emissions trading

- Three types of energy efficiency measures
 - <u>No-cost/low-cost</u>: require no investment appraisal
 - <u>Medium cost</u>: require only a simple payback calculation
 - <u>High capital cost</u>: require detailed design and a full investment appraisal
- Financial decision to consider economic payback, complexity and ease of application
 - Wider benefits such as improvements in comfort and the environment

- Process of energy efficient design
 - 1. Identify <u>user requirements</u>
 - 2. Design to meet them with <u>minimal</u> energy use
 - 3. Establish an <u>integrated design</u> team with a brief and contract that promotes energy efficiency
 - 4. Set <u>energy targets</u> at early stage & design for them
 - 5. Design for manageability, maintainability, operability & flexibility
 - 6. <u>Check</u> that the final design meets the targets



- Building design stages (e.g. RIBA plan)*
 - A. Inception
 - B. Feasibility
 - C. Outline proposals
 - D. Scheme design
 - E. Detail design
 - F. Production information
- Energy efficiency considerations at each stage

(* See also www.mech.hku.hk/bse/MEBS6016/BuildingEnergyDesignProcess.pdf)

Integrated energy design process

Project phase	Action items
Preliminary design	Define energy problems and opportunities
	Identify candidate solutions
	Perform preliminary economic analysis
Design development	Perform detailed lighting and daylighting studies
	Integrate load-avoidance techniques into mechanical design
	Coordinate architectural, lighting, and interior designs
	Simulate energy performance of the integrated design
	Refine economic analysis
	Prepare commissioning plan
Construction documents	Review building plans and specifications
	Review equipment selections
	Review construction details
	Finalize energy-performance and economic analyses
Construction	Review change orders
	Review product substitutions
	Inspect quality of materials and correctness of installations
Commissioning and	Implement a commissioning plan
occupancy	Verify energy savings
	Solicit feedback from occupants

The complex value chain in the building sector

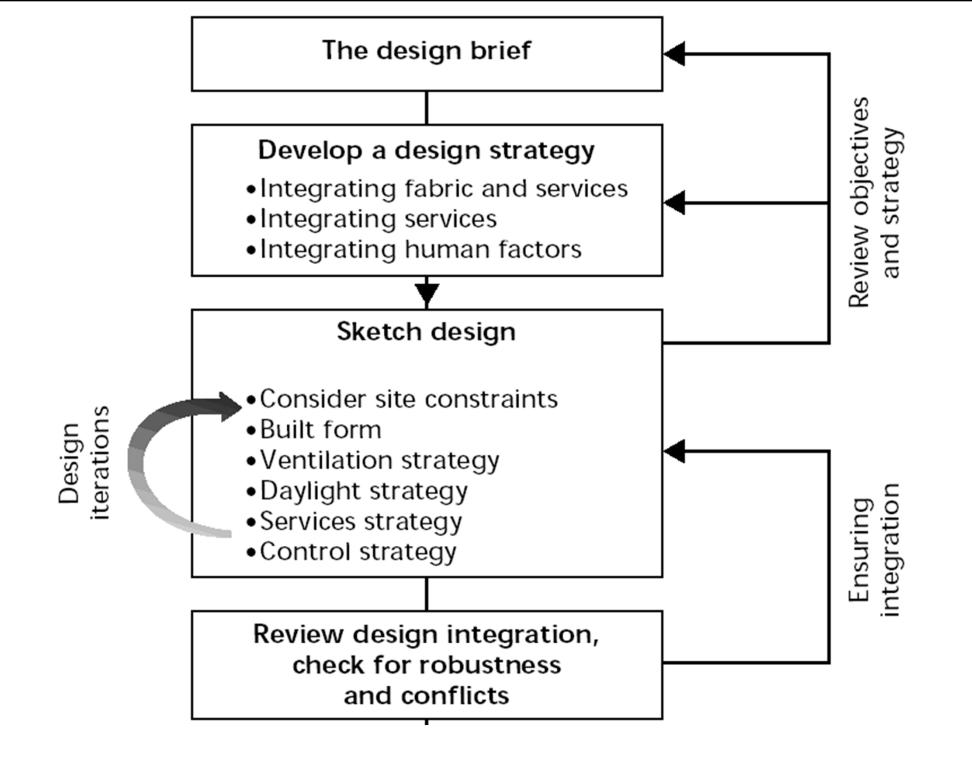
(Source: World Business Council for Sustainable Development, <u>www.wcbsd.org</u>)

- Success depends on
 - Understanding the <u>interactions</u> between people, building fabric and services*
 - <u>Collaboration</u> of client, project manager, architect, engineer and quantity surveyor at the early conceptual stage of the project
- Generally, owner-occupiers will be more interested in low running costs than will speculative developers

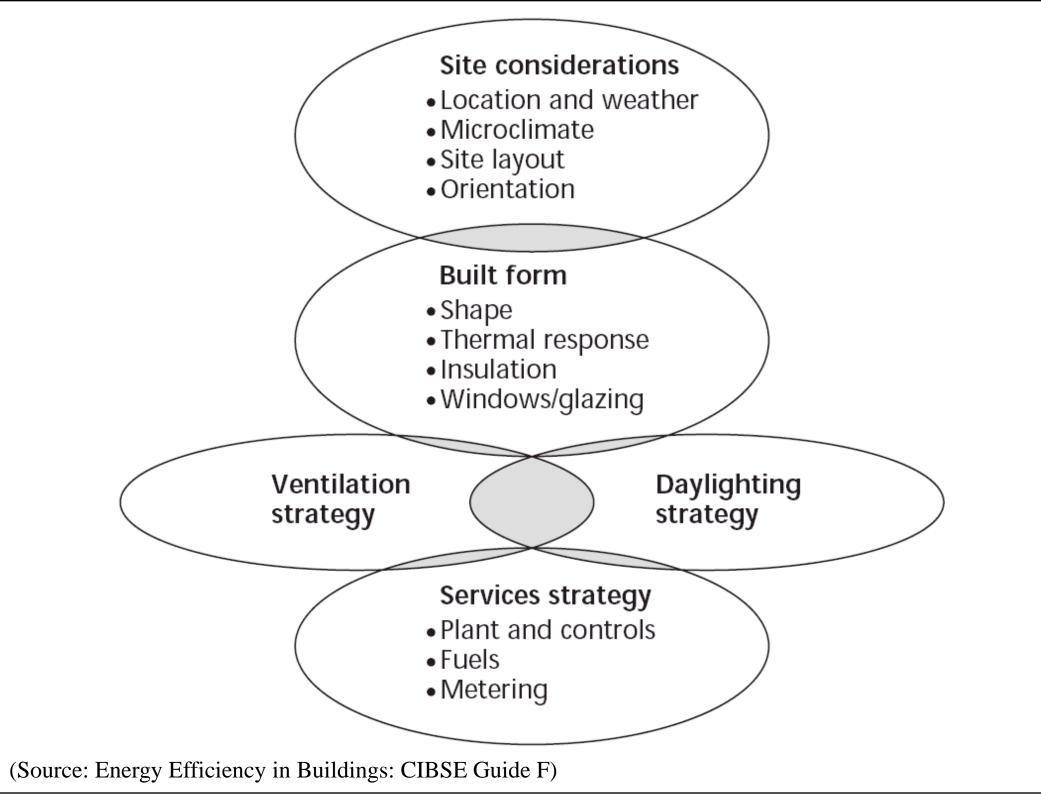
(* See also www.mech.hku.hk/bse/MEBS6016/DesignStrategy.pdf)

- <u>The design team</u> (multi-disciplinary)
 - Should be appointed early at inception stage
 - Make the client aware of the implications that decisions have on life cycle costs
 - Provide an energy efficient design that takes account of energy management, maintenance needs and occupant comfort/control
 - Predict energy performance and running costs; Propose further options for energy efficiency, highlighting the potential benefits
 - Produce good documentation which makes the design intent clear

- The <u>energy efficient brief</u> should include:
 - The client's intentions, requirements and investment criteria
 - Energy & environmental targets
 - Life cycle costs
 - Intentions to include energy efficient equipment
 - A requirement to undertake integrated design
- Good use of natural light & ventilation often can provide greater energy efficiency



• The <u>contract issue</u>


- Energy efficient buildings often require greater professional skill and design input
- Must have enough time at an early stage
- Fee component for energy design on a contract
 - Fee structures based entirely on capital cost may not encourage energy efficiency
 - Lump sum fees based on the estimated time spent
- Any other suggestions for a better fee structure?

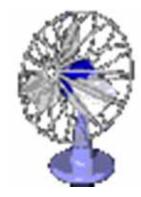
- Building design as an <u>iterative</u> process
 - Review objectives, strategy & design criteria
 - Re-think fundamental aspects of the design
- Integrated approach to energy efficient design
 - Integrate fabric (Arch/Struct) and services (BSE)
 - Integrate building services
 - Integrate human factors
- The integration can present opportunities to reduce capital cost, e.g. reduce HVAC plant

(Source: Energy Efficiency in Buildings: CIBSE Guide F)

- Integrate fabric and services*
 - Function of the building envelope
 - Climatic modifier

- Good design can minimise the need for services
 - Respond to weather & occupancy
 - Make good use of natural light, ventilation, solar gains and shading
- Performance criteria
 - Cost, indoor environment quality, space requirements, energy use, robustness, ease of operation

(* See also www.mech.hku.hk/bse/MEBS6016/DesignStrategy.pdf)


• Fabric issues

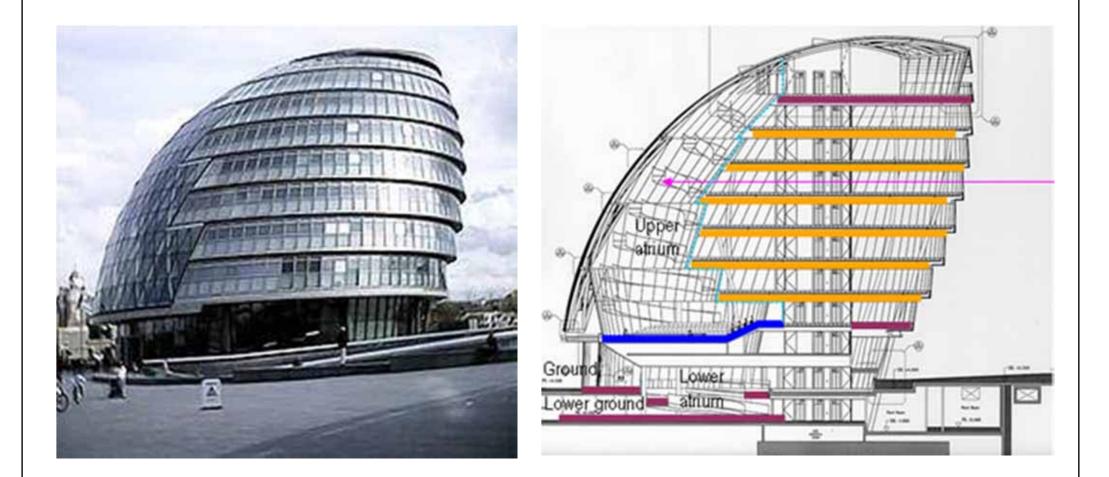
- Deep/swallow floor plan
- Orientation
- Percentage glazing
- Lightwells/atria
- Air tightness
- Thermal response

- Services issues
 - Cooling
 - Heating
 - Electric light & daylight
 - Natural ventilation
 - Mechanical ventilation & air conditioning

- Integrate services
 - Minimise conflict between building services
 - Such as electric light & the need for cooling
 - Simultaneous heating and cooling
 - Zoning services & proper controls
 - Natural ventilation, free cooling, heat recovery

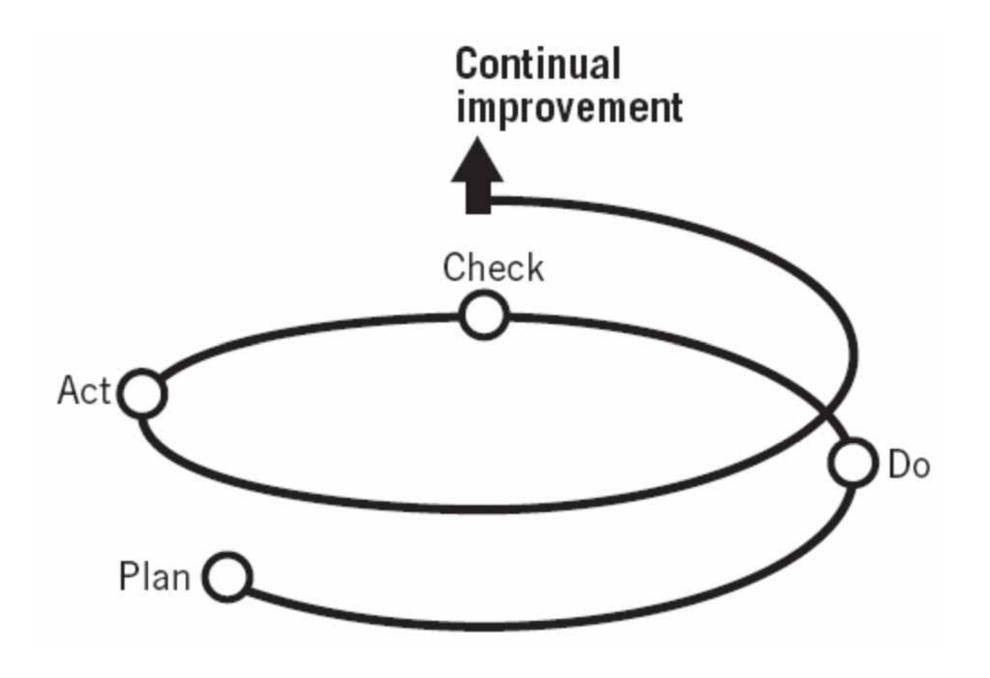
- Minimise requirements for services
 - Avoid over-specification & excessive design margins
 - Optimise internal heat gains
 - Optimise natural ventilation
 - Optimise daylighting
 - Utilise thermal storage, heat recovery, free cooling
 - Minimise distribution losses

- Integrate human factors
 - Manageability (avoid over complex design)
 - Maintainability (adequate access & monitoring)
 - Flexibility (adaptation & space allowance)
 - Controllability (allow users to adjust)



- Video: "A Democratic Building" (17 min.)
 - GLA Building in London
 - Client: Greater London Authority (GLA)
 - Architects: Foster and Partners
 - Engineers: Ove Arup
 - Review questions:
 - How the project team reduce building's energy needs?
 - What are the integrated features?
 - What is the energy code requirement in UK?

London City Hall GLA Building



- The Deming System of Profound Knowledge
 - <u>Appreciation of a system</u>: understand the overall processes involving suppliers, producers, and customers of goods and services
 - <u>Knowledge of variation</u>: the range and causes of variation in quality, and use of statistical sampling in measurements
 - <u>Theory of knowledge</u>: the concepts explaining knowledge and the limits of what can be known
 - Knowledge of psychology: concepts of human nature

(Source: The New Economics, by Dr. W. Edwards Deming)

Four steps of the management process (for continual improvement)

(Source: The New Economics, by Dr. W. Edwards Deming)

• Plan

- Obtain insight (energy audit)
- Get management commitment
- Nominate energy champion
- Policy, objectives, structure
- Assign responsibilities
- Develop programme(s)
- Set targets and measures
- Set priorities, develop action plans

• **Do**

- Create awareness
- Train key resources
- Implement projects
- Monitor progress
- Lock in the gains Set new targets
- Communicate results
- Celebrate success

• Check

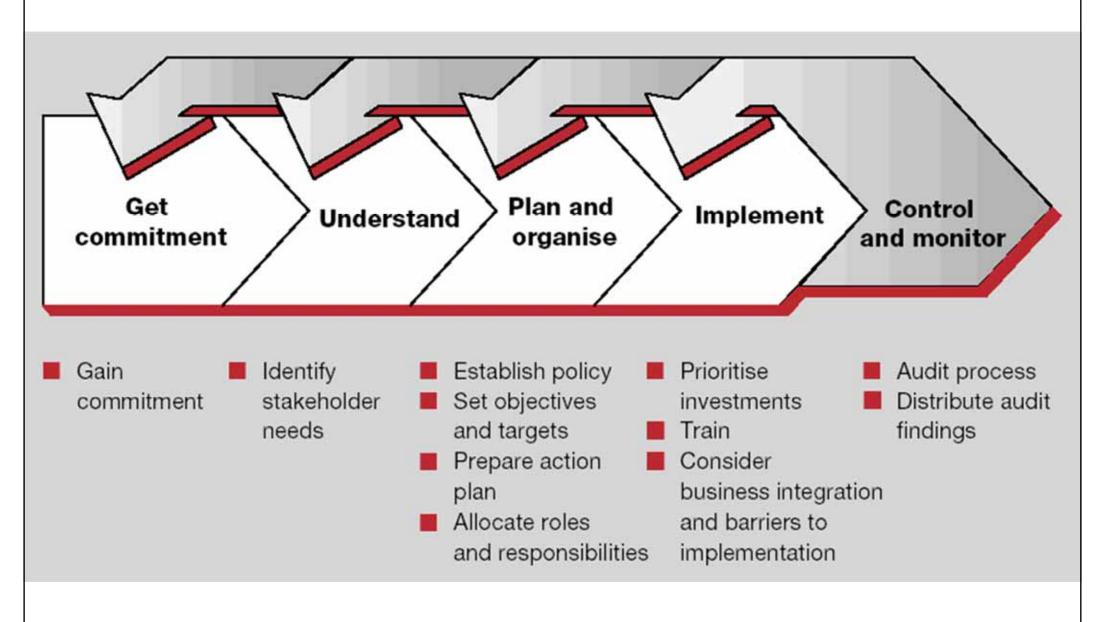
- Review results
- Verify effectiveness
- Examine opportunities for continual improvement

• Act

- Correct deficiencies
- Review original energy policy
- Review objectives and targets
- Review energy program
- Update action plans
- Start the cycle anew

- Energy Management Opportunities (EMOs)
 - Housekeeping: an energy management action that is repeated on a regular basis and never less than once per year
 - Low cost: this type of energy management action is done once and for which the cost is not considered great.
 - <u>Retrofit</u>: this energy management action is done once, but the cost is significant

- Energy efficiency
 - It is greatly affected by building management, operation and maintenance
 - Key to energy efficient mgt. of <u>existing</u> buildings
 - A sound understanding of the building
 - A clear energy management & maintenance policy
 - Clear organisational structures & roles
 - Encourage & motivate the occupants
 - Set energy targets & continually monitor performance


- Energy management matrix*
 - Energy policy
 - Organising
 - Motivation
 - Information systems
 - Marketing
 - Investment
- Performance levels: 0, 1, 2, 3, 4

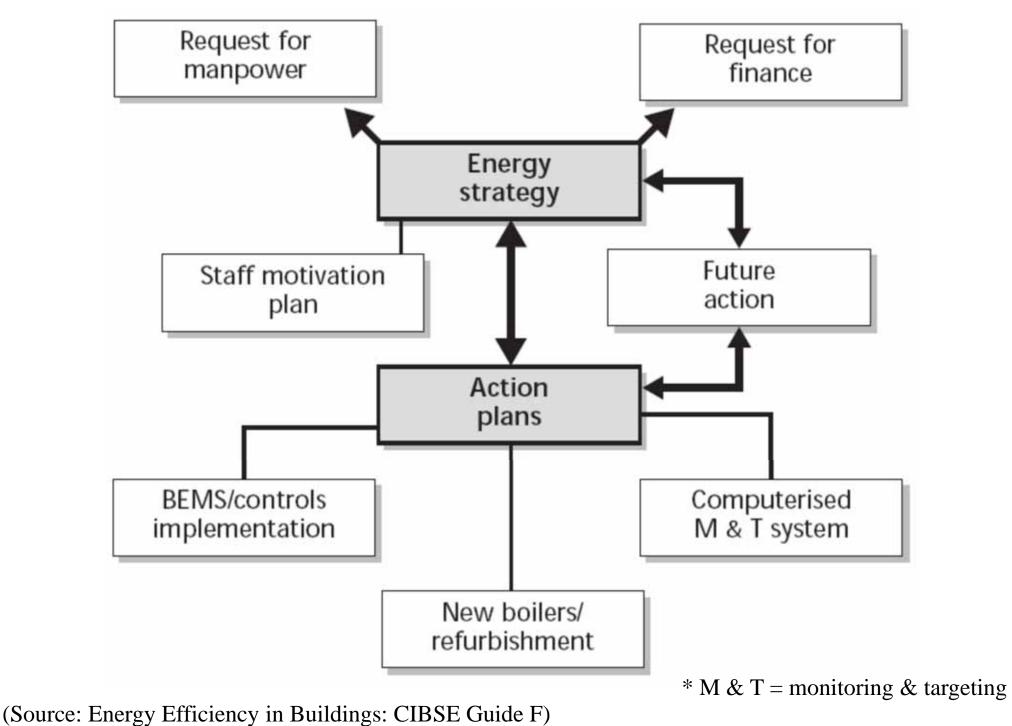
(* See also www.mech.hku.hk/bse/MEBS6016/EnergyManagementMatrix.pdf)

Level	Energy policy	Organising	Motivation	Information systems	Marketing	Investment
4	Energy policy, action plan and regular review have commitment of top management as part of an environmental strategy	Energy management fully integrated into management structure. Clear delegation of responsibility for energy consumption	Formal and informal channels of communication regularly exploited by energy manager and energy staff at all levels	Comprehensive system sets targets, monitors consumption, identifies faults, quantifies savings and provides budget tracking	Marketing the value of energy efficiency and the performance of energy management both within the organisation and outside it	Positive discrimination in favour of 'green' schemes with detailed investment appraisal of all new-build and refurbishment opportunities
3	Formal energy policy but no active commitment from top management	Energy manager accountable to energy committee representing all users, chaired by a member of the managing board	Energy committee used as main channel together with direct contact with major users	M&T reports for individual premises based on sub-metering, but savings not reported effectively to users	Programme of staff awareness and regular publicity campaigns	Same pay back criteria employed as for all other investment
2	Unadopted energy policy set by energy manager or senior departmental manager	Energy manager in post, reporting to ad-hoc committee, but line management and authority are unclear	Contact with major users through ad- hoc committee chaired by senior departmental manager	Monitoring and targeting reports based on supply meter data. Energy unit has ad-hoc involvement in budget setting	Some ad-hoc staff awareness training	Investment using short term pay back criteria only
1	An unwritten set of guidelines	Energy management the part-time responsibility of someone with only limited authority or influence	Informal contacts between engineer and a few users	Cost reporting based on invoice data. Engineer compiles reports for internal use within technical department	Informal contacts used to promote energy efficiency	Only low cost measures taken
0	No explicit policy	No energy management or any formal delegation of responsibility for energy consumption	No contact with users	No information system. No accounting for energy consumption	No promotion of energy efficiency	No investment in increasing energy efficiency in premises

Energy Management Matrix (example)

A systematic approach to energy management

• Understand the building


- Gain a strategic overview of the design intent
 - From O&M manuals, drawings, surveys & inspection
- Ensure that the building is well documented
 - Such as the idea of "building log book"
- Identify the current status of the building
 - Through overall & specific performance indicators
 - Detailed assessments, audits & surveys
- Identify and address problem areas (e.g. controls)

• Set up energy policy to

- Establish senior management commitment
- Improve overall approach to energy management
- Help to keep the main objectives in full view
- Maximise the use of resources (time and money)
- Provide goals against which to monitor
- Provide a clear direction for the energy team
- Give senior management a way forward

A framework for developing energy policy

Management structures

- Responsibility and reporting lines
 - Line managers accountable for their own energy use
- Roles and activities
 - Senior management, energy manager, general staff
- Obtaining resources
 - Financial investment
 - Manpower Investment

- <u>Management structures</u> (cont'd)
 - Sub-contracting energy management
 - Specialist consultants
 - Contract energy management (CEM) companies
 - Also called energy services companies (ESCO)
 - Contract facilities management
 - Purchasing policy
 - Energy
 - External contracts (out-sourcing)
 - Office equipment & high-efficiency motors

- Occupant involvement
 - Motivation and training
 - Managing PEOPLE
 - Occupant satisfaction
 - Comfort, health and safety of the occupants
 - Securing understanding and involvement of occupants

- Planning maintenance
 - Maintenance policy
 - Types of maintenance
 - Reactive or breakdown maintenance
 - Planned preventative maintenance
- Maintenance contracts
 - Performance specification
 - Use of maintenance contractors

Table 16.2 Advantages and disadvantages of contract and direct labour

Contract	Direct labour		
More competitive price	More difficult to assess costs		
More flexible workforce wit	Fixed workforce and fixed skills		
wide skills May not be able to respond to all	Always available to respond to emergencies		
emergencies	In-house supervision required		
Contract needs to be monitored	Need to provide specialist tools and training		
Specialist training and tools included			

(Source: Energy Efficiency in Buildings: CIBSE Guide F)

• Monitoring maintenance

- Maintenance records
 - Installation records: e.g. O&M manuals, plant details
 - Service records: include log sheets, job records, etc.
- Checking maintenance standards
 - Such as breakdown frequency
 - Annual spend on building services maintenance

Table 16.3 Approximate costs for maintaining mechanical and electrical services

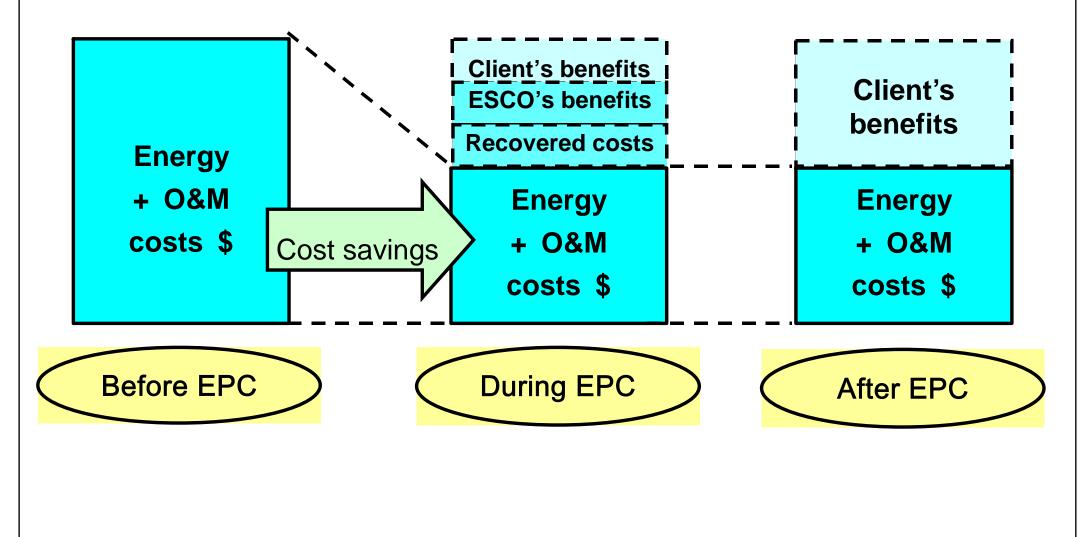
Building type	Cost (£/m²)
Hospitals	12-14
Hotels	8-10
Offices, light industrial, university	6-9
Leisure	4-6
Major retail	3–5
Schools, residential homes	2-4
Note: based on BSRIA research 1991	

(Source: Energy Efficiency in Buildings: CIBSE Guide F)

- Good housekeeping
 - Such as switch off lights when not needed
- Maintaining for energy efficiency
 - Building fabric
 - Controls
 - Heating ventilation & air conditioning systems
 - Refrigeration systems
 - Lighting systems
 - Motors and drives

- Refurbishing existing buildings
 - Complete refurbishment
 - Total replacement of plant & major changes to fabric
 - Major refurbishment
 - Replacement of major plant & some changes to fabric
 - Minor refurbishment
 - Refitting the interior & making minor alterations to space layout and plant
 - Passive refurbishment
 - Passive methods: daylighting & natural ventilation

- Retrofitting energy saving measures
 - Identify high energy users
 - Establish the potential for energy saving through measurement, audits etc.
 - Identify practicable measures to achieve savings
 - Establish the financial case for introducing these measures, as well as other benefits
 - Implement the savings in a planned way
 - Monitor the savings to confirm


- Typical process
 - Programme development & planning
 - Identify measures
 - Energy surveys and audits
 - Integrating the measures
 - Reporting the results
 - Assessing energy saving measures
 - Option appraisal
 - Investment criteria
 - Life cycle costing

- Energy performance contracting (EPC)
 - = energy savings performance contracting
 - A financing technique to raise money for energy efficiency investments based on future savings
- Energy services companies (ESCO)*
 - Offer EPC services, without upfront capital on building owners
 - Becoming an important trend in many countries like USA and Japan

(* See also <u>http://en.wikipedia.org/wiki/Energy_service_company</u>)

Basic concept of energy performance contracting (EPC)

Performance contract

- Contract with payments based in performance
- Can be used for energy conservation projects, to mitigate indoor air quality concerns, to reduce water & sewage usage, or to implement renewable energy systems
- ESCO guarantees and takes the risk of not achieving savings; it is paid back out of the savings (in around 4-10 years)

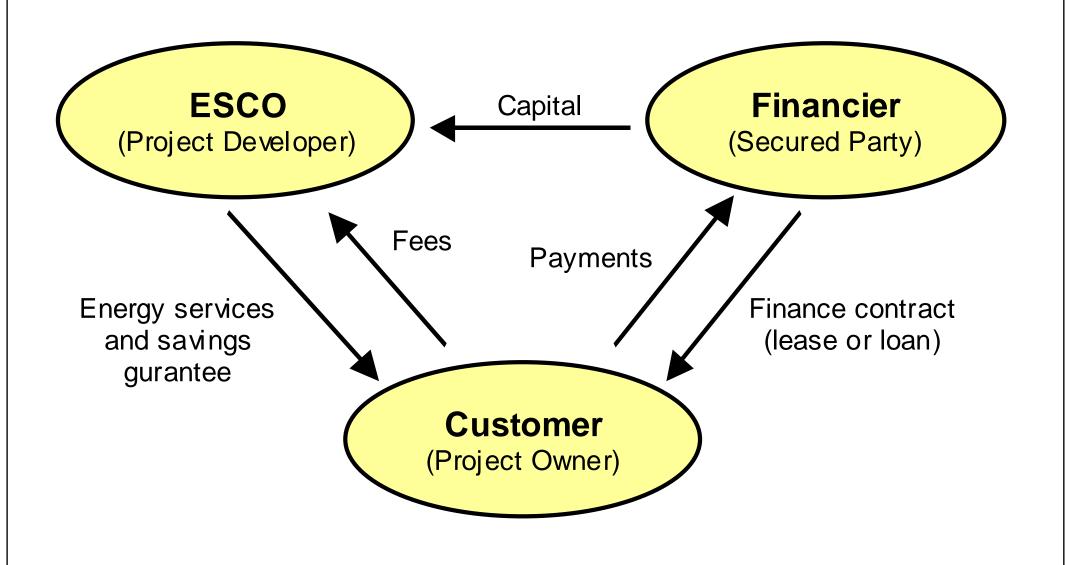
- Benefits of a performance contract for a business
 - Reduced risk (contractor guarantees)
 - Turnkey services (contractor provides all services)
 - The business needs less internal expertise
 - Project financing can be 'off balance sheet'
 - Advanced products & services can be used
 - Savings can be much higher than done by itself
 - Additional improvements to built environment

- Typical measures include
 - Energy reduction via equipment retrofitting
 - Such as replace lighting equipment, chillers & boilers
 - Fuel saving measures
 - Such as add wall insulation or pool cover
 - Water efficiency measures
 - Load shifting
 - Such as by energy management control systems
 - Modification of operating procedures

- Different ways of structuring such a contract
 - 'Guaranteed savings'
 - Most common; length 4-8 years
 - Allow extra measures to be added
 - '<u>Shared savings</u>'
 - The Client & ESCO share the savings; up to 10 years
 - Actual cost not included in contract
 - 'Pay from savings'
 - Variation from shared savings; operates like a loan
 - '<u>Chauffage</u>' or full services (ESCO takes over)

Typical EPC project stages

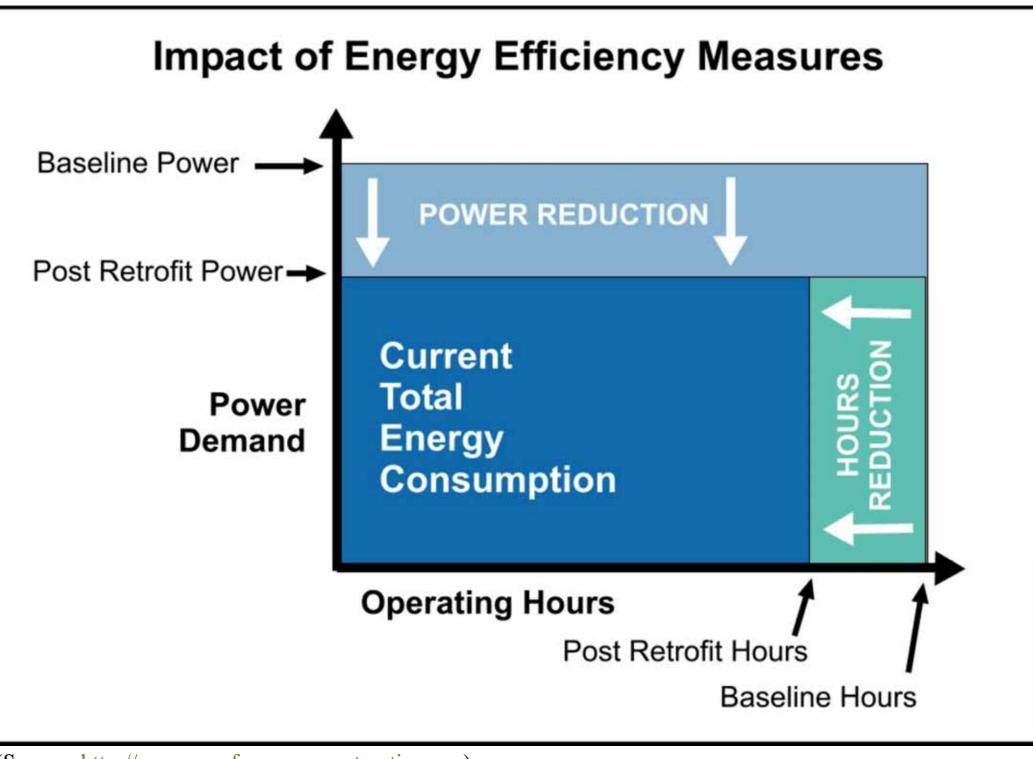
- Stage 1: The opportunity assessment
- Stage 2: Preliminary energy services
- Stage 3: Develop detailed proposal
- Stage 4: Project implementation
- Stage 5: Performance assurance + M&V services
- Technical knowledge, risk management skills & understanding of local practices
- Outsourcing strategies (why not in-house?)



- Choosing a contractor
 - Equipment suppliers
 - Best if their technologies are the main measures
 - Fee-based ESCO
 - Best for a wide range of measures or long-term facilities management
 - Utility-based ESCO
 - Best if focus on electricity or gas technologies
 - International energy companies
 - Best for international connection & overseas technology transfer

- Project financing
 - By the ESCO itself
 - As a loan from financial institution
 - By working together with the client
- Under adverse economy

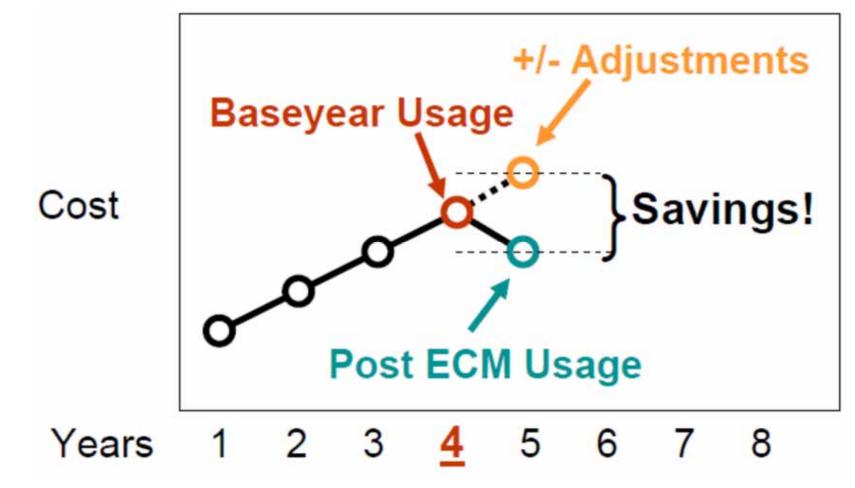
- The client may not have the project capital
- ESCO need to negotiate with bankers to explore creative financial tools


Financial structure used by ESCO

- Measurement & verification (M&V) methods
 - Deemed or stipulated savings
 - Payments based on savings estimates, using measurements or audit + equipment characteristics
 - Savings based on utility bills
 - Past energy bills determine baseline consumption
 - Measured savings
 - Compare 'before' & 'after' measurements
- M&V options & techniques have matured
 - Guidelines e.g. IPMVP* and ASHRAE 14-P

(* IPMVP = International Performance Measurement & Verification Protocol)

- International Performance Measurement & Verification Protocol (IPMVP)*
 - A framework to determine energy and water savings associated with energy conservation measures (ECMs)
- An M&V plan
 - For proper savings determination and form the basis for verification
 - Fundamentally defines the meaning of the word 'savings' for each project


(* See also http://en.wikipedia.org/wiki/International_performance_measurement_and_verification_protocol)

⁽Source: <u>http://energyperformancecontracting.org</u>)

Credibility of savings calculation

Another term for the "calculated savings" is "cost avoidance"

Energy Savings = Baseyear Usage – Post ECM Usage +/- Adjustments

*Key issue: how to determine the baseline & manage the adjustments

(Source: <u>http://energyperformancecontracting.org</u>)

M&V options and typical applications

	Description	Typical applications	
A. Retrofit isolation: key parameter measurement	Savings are determined by partial field measurements of the energy use of the system(s) to which an ECM was applied. Some, but not all, parameters may be stipulated.	Lighting retrofit where pre- and post- retroft fixture Wattages are measured. Operating hours of the lights are typically agreed upon.	
B. Retrofit isolation: all parameter measurement	Savings are determined by field measurements of the energy use of the system(s) to which an ECM was applied.	Variable speed drive on a pump. Electricity use is measured by a kWh meter installed on the electrical supply to the pump motor.	
C. Whole facility (utility bills or meter data)	Savings are determined by measuring energy use at the utility meter level. Bills may be corrected for weather.	Several ECMs affecting many systems in a building. Utility bills are used.	
D. Calibrated simulation	Savings are determined using building simulation. This option is used primarily when there is no pre-retrofit utility data available.	Multifaceted energy management programme affecting many systems in a building but where no base-year data are available.	

- An M&V plan should include:
 - A description of the energy conservation measure (ECM) and its intended result
 - An overview of intended M&V option to be used
 - Measurement methods and equipment to be used
 - Commissioning of the newly installed ECM's
 - Documentation of post ECM energy and operating data
 - Savings report
 - Costs of M&V operations and equipment