MEBS6016 Energy Performance of Buildings

http://www.hku.hk/bse/MEBS6016/

Self-evaluation Exercise (2010-2011) (Suggested Solutions)

(* Outline of the solution only)

1. (a)

Possible benefits of energy efficiency:

- Improved building design and operation
- Better working environments
- Life-cycle cost savings
- Added market value of buildings
- Reduced CO₂ emissions and consumption of finite fossil fuels
- Reduced capital cost by better integration of building fabric and systems

Key strategies to achieve energy efficiency for new buildings and existing buildings (w/ brief discussions for each):

- For new buildings
 - Designing the building
 - Design strategy
 - Control strategies
 - Commissioning
- For existing buildings
 - Operating and upgrading the building
 - Building management
 - Refurbishment/renovation/retrofitting
 - Maintenance and monitoring

1. (b)

Average cost of electricity = $3.5 \times 10^6 / 3.2 \times 10^6 \text{ kWh} =$

Net floor area = 0.7 x Gross floor area = $0.7 \text{ x} 20,000 = 14,000 \text{ m}^2$ Energy charge = annual electricity cost x (1 – 15%)

- i) Energy utilization index, based on net floor area is: $3.2 \times 10^6 / 14,000 = \frac{228.6 \text{ kWh/m}^2/\text{year}}{(\text{or } 823 \text{ MJ/m}^2/\text{year})}$
- ii) Energy cost index, based on net floor area is: $3.5 \times 10^{6} \times (1 - 15\%) / 14,000 = \frac{212.5 / m^{2} / year}{1000}$

From the given energy benchmark graph, at 823 $MJ/m^2/year$ the percentile is about 54%. That means, 46% of the building population in this group is having energy consumption level higher than this building while 54% of the building population is having energy consumption level lower than it. This building is close to the average in the group.

2. (a)

The EU directive, came into force on 4 Jan 2003, is an important move by the European Union and will contribute to reducing carbon dioxide emissions under the Kyoto protocol (Europe overall -8% emission). It will also set out a trend for promotion & assessment of building energy performance in the world.

How does the EU directive work? It facilitated requirements to measure building energy use by:

- Introducing agreed measurements of relative energy performance
- Regular inspections and re-evaluations
- Requiring higher standards for upgrading larger buildings
- Improving standards for new buildings

Four major requirements of the directive and their implications (w/ brief description):

- 1. Methodology for integrated buildings energy performance standards
- 2. Application of these standards on new and existing buildings
- 3. Certification schemes for all buildings
- 4. Inspection & assessment of boilers/heating and cooling installations

2. (b)

Annual energy cost savings in dollars:

Option A = $[(360,000 - 180,000) / 3.6] \times (\$1/kWh) = \$50,000$ Option B = $[(360,000 - 252,000) / 3.6] \times (\$1/kWh) = \$30,000$

Simple payback (SPB):

Option A = \$200,000 / \$50,000 = <u>4 years</u> Option B = \$100,000 / \$30,000 = <u>3.3 years</u>

Return on investment (ROI): Option A = $50,000 / 200,000 \times 100\% = 25\%$ Option B = $30,000 / 100,000 \times 100\% = 30\%$ With interest rate 10% and the study period 10 years, present worth factor is: PWF = [1 - 1/(1 + 0.1)10]/0.1 = 6.145

Net present value (NPV): Option A = -\$200,000 + \$50,000 x 6.145 = **\$107,250** Option B = -\$100,000 + \$30,000 x 6.145 = **\$84,350**

Since Option A has a higher NPV, it is preferred.

3. (a)

Prescriptive approach:

- Advantages:
 - Simple to use & follow
 - Easy to check & enforce
- Drawbacks:
 - Rather restrictive
 - o Barrier to innovation & performance optimization
 - Hinder cross-country product trading

Performance approach:

- Advantages:
 - More clearly explains what the code intends
 - Permits innovation & alternative solutions
 - o More flexible regulatory environment, easily updated
 - Encourage building/technology research
- Drawbacks:
 - o Often more efforts are needed for analysis/compliance
 - Can be very complex & require energy expertise

Four situations where simulation method is not recommended:

- If it can't answer the design question (such as airflow & occupant behaviours)
- If the design has proceeded too far (unlikely anything can be changed)
- If project is too small or time is too tight (not economical to carry out simulation)
- If you do not understand the benefits & limitations of the simulation

3. (b)

From the pump law, estimated new annual energy consumption is: $(8,000 \text{ kWh}) \ge (70/100)3 = 2,744 \text{ kWh}$

Therefore, Estimated annual energy savings = (8,000 - 2,744) = 5,526 kWh

Estimated annual energy cost savings = $(5,526 \text{ kWh}) \times (\$1/\text{kWh}) = \$5,256$

Net annual cost saving = \$5,256 - \$200 = **<u>\$5,056</u>**

Simple payback = \$20,000 / \$5,056 = <u>3.96 years</u>

Discount factor = $(1 + r)^{-n} = (1 + 8\%)^{-n}$

Thus, cash flow analysis for a study period of 10 years is:

Year	Initial cost	Energy	Additional	Net cost	Discount	Present
		savings	maint. cost	savings	factor	value
0	-\$20,000				1.000	-\$20,000
1		\$5,256	-\$200	\$5,056	0.926	\$4,682
2		\$5,256	-\$200	\$5,056	0.857	\$4,333
3		\$5,256	-\$200	\$5,056	0.794	\$4,014
4		\$5,256	-\$200	\$5,056	0.735	\$3,716
5		\$5,256	-\$200	\$5,056	0.681	\$3,443
6		\$5,256	-\$200	\$5,056	0.630	\$3,185
7		\$5,256	-\$200	\$5,056	0.583	\$2,948
8		\$5,256	-\$200	\$5,056	0.540	\$2,730
9		\$5,256	-\$200	\$5,056	0.500	\$2,528
10		\$5,256	-\$200	\$5,056	0.463	\$2,341
			Total =	\$50,560		\$13,926

Total life cycle cost = -20,000 + 33,926 = 13,926

Or, with interest rate 8% and the study period 10 years, present worth factor is: $PWF = [1 - 1/(1 + 0.08)^{10}]/0.08 = 6.71$

Total life cycle cost = $-$20,000 + $5,056 \times 6.71 = $13,926$