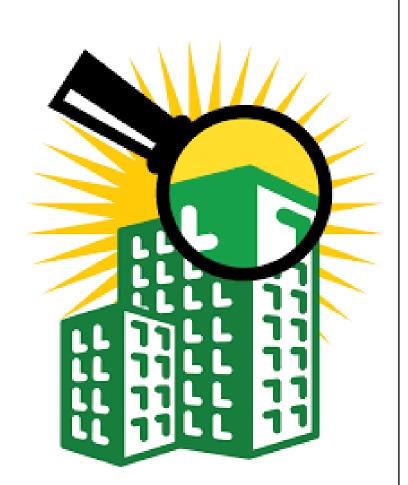
MEBS6020 Sustainable Building Design

http://ibse.hk/MEBS6020/

Green Building Assessment (I)

Ir Dr. Sam C. M. Hui
Department of Mechanical Engineering
The University of Hong Kong
E-mail: cmhui@hku.hk

Contents

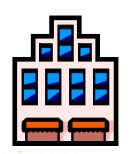


• Environmental performance

Assessment criteria

Assessment methods

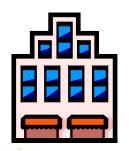
Current tools



- How building construction affects the environment
 - Energy use (e.g. electricity)
 - Greenhouse gas emissions (affect climate change)
 - Water use and drainage
 - Construction materials (resource use)
 - Waste from building construction and demolition
 - Land use and impact on the nature
 - Indoor environment and health (on human beings)

- Importance of building sector
 - Globally, buildings account for 40% of energy use, 38% of greenhouse gas emissions, 12% of potable water and 20% of solid waste streams in developed countries
 - The Intergovernmental Panel on Climate Change (IPCC) has identified buildings as the greatest impact, least costly way to reduce greenhouse gas emissions and address climate change

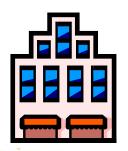
Estimate of global resources used in buildings and cities

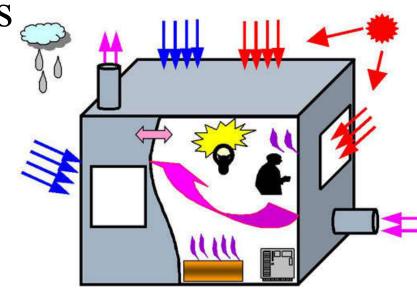

Resource	(%)
Energy	45-50
Water	50
Materials for buildings and road (by bulk)	60
Agricultural land loss to buildings	80
Timber products for construction	60 (90% of hardwoods)
Coral reef destruction	50 (indirect)
Rainforest destruction	25 (indirect)

Estimate of global pollution that can be attributed to buildings and cities

Pollution	(%)
Air quality (cities)	23
Global warming gases	50
Drinking water pollution	60
Landfill waste	50
Ozone thinning/depletion	50

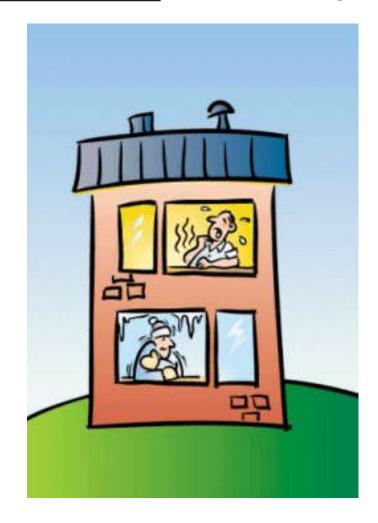
(Ref: Edwards, B., 2014. Rough Guide to Sustainability: A Design Primer, 4th ed., RIBA, London.)




- What is "Performance"?
 - Performance is meeting expectations
 - How well it works
- CIB definition *:
 - "The objectively identifiable qualitative or quantitative characteristics of the building which help determine its aptitude to fulfil the different functions for which it was designed."

(* CIB = International Council for Research and Innovation in Building & Construction)

Environmental performance

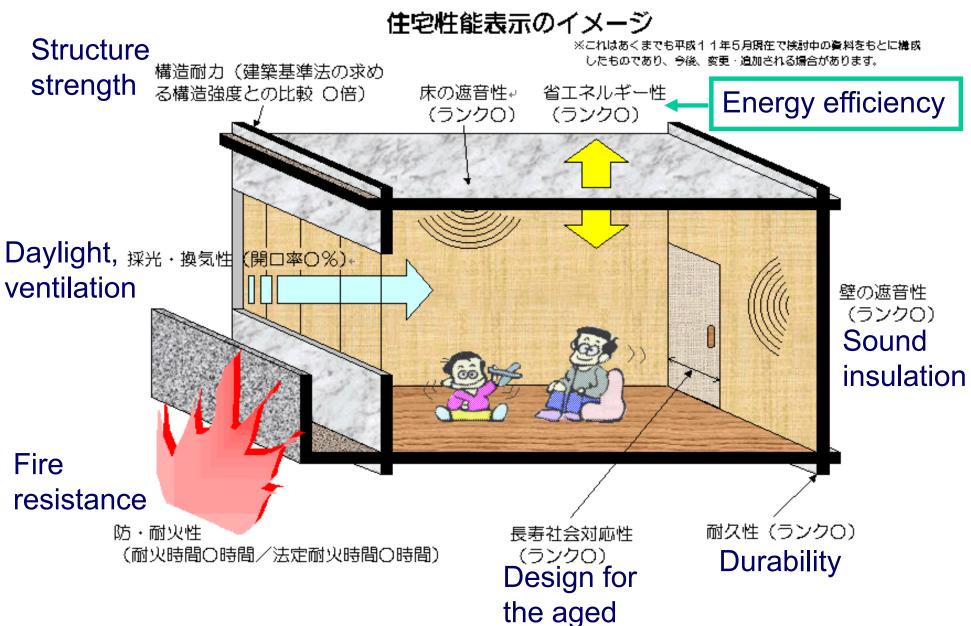

- Building performance issues
 - Functionality
 - Serviceability (usableness)
 - Building-occupant comfort
- Trends
 - Use it as the major criteria for building design
 - Performance-based design and building codes
 - The need to study, measure, and predict the level of building performance (to quantify)

Performance of a car

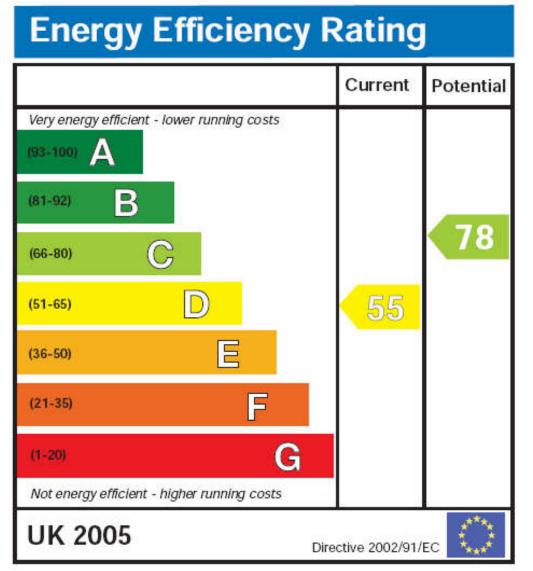
(Such as fuel efficiency)

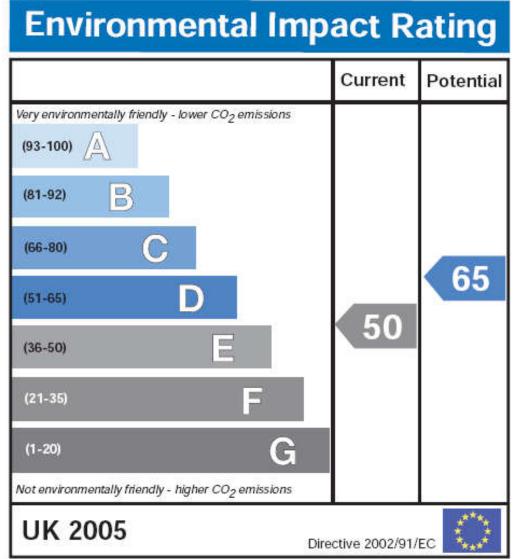
Performance of a building/flat

Can we indicate the performance of a building, like a car?



- Parameters of building performance
 - Structural
 - Fire and life safety
 - Accessibility
 - Durability
 - Sound insulation (acoustic)
 - Environmental
 - Energy efficiency




I learnt this when I was working and living in Japan in 1998.

Index of Building (Houses) Performance (Japan)

Energy efficiency rating and environmental impact rating in UK

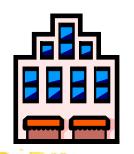
They are similar to the academic performance (grade/GPA) of students.

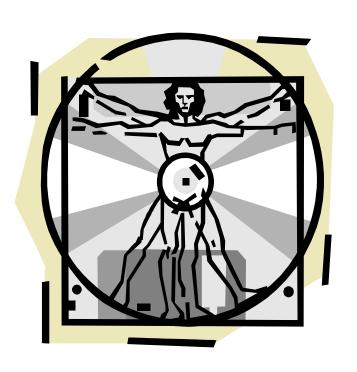
(Source: www.energysavingtrust.org.uk)

- Environmental performance is the measurable results of an environmental management system, related to the environmental aspects
 - Assessment of environmental performance is based on environmental policy, environmental objectives and environmental targets
- There is a need to measure and evaluate the environmental performance of buildings in a systematic manner

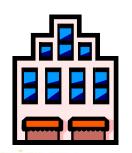
Environmental performance

- Building environmental assessment*
 - <u>Identify</u> & <u>evaluate</u> the environmental effects of building development or operation
 - <u>Inform</u> decision making and <u>promote</u> sustainable design & management
- An objective assessment is a useful starting point from which to make design and building improvements


For supporting decision making



- <u>Design guidelines</u> provide a broader range of issues; <u>Assessment methods</u> give structure and priority, and provide strategic advice
 - Enhance environmental knowledge
- Enable building performance to be described
 - Performance-based indicators
 - Declared benchmarks
 - Prescriptive requirements (proxies for actual performance)


Environmental performance

- Scope/Scale of the evaluation
 - Building products
 - Building processes
 - Structural members/elements
 - Building systems
 - Single buildings
 - Groups of buildings
 - District, urban, regional & city
- Building types: new, existing & refurbished

- Methods to assess the performance
 - Component by component method
 - Simple to understand and easy to implement
 - Such as HK building energy codes (prescriptive)
 - Whole building performance method
 - In kWh/m²/year or energy cost budget
 - Flexible but complicated in compliance
 - Such as HK's performance-based building energy code

- Why environmental assessment?
 - Provide a common set of criteria & targets
 - Guide design decisions & choices
 - Raise awareness of environmental issues/standards
 - Recognise & encourage good practices
 - Stimulate the market for sustainable construction
 - Allow a verifiable method & framework
 - Enable policies & regulation (e.g. certificate/label)
 - Improve management & prioritization (incentives)

Basic principles of building environmental assessment **Building Activities** Issues **Planning** Good practices Development Design Criteria Guidelines Construction Operation **Environmental Environmental Performance Assessment Benchmarks Assessment** Methods Goals Assessment Ratings Tools

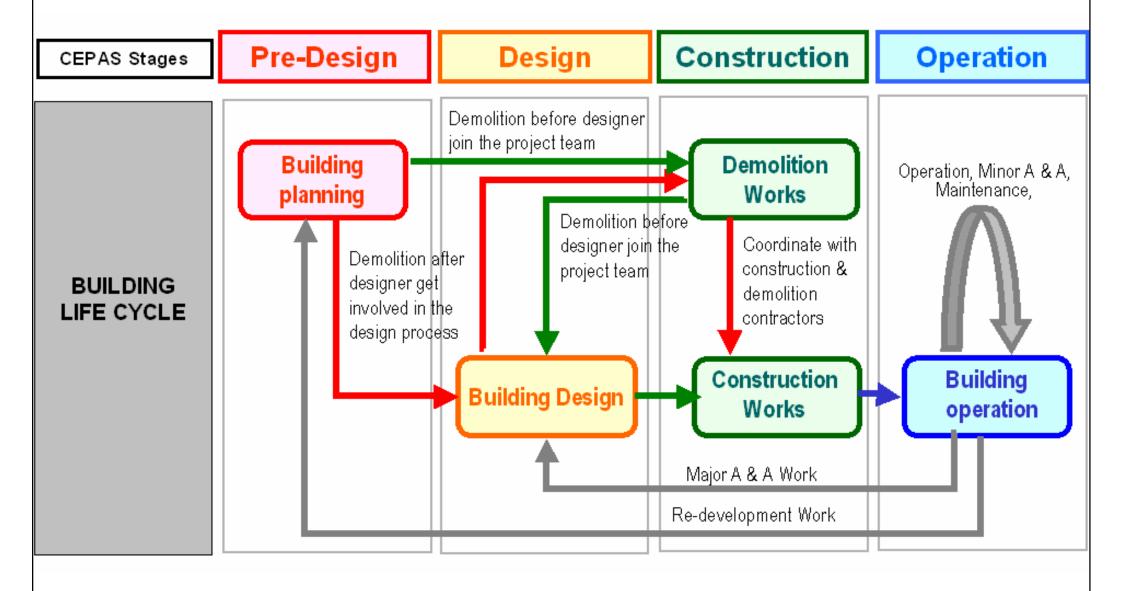
- A broad range of criteria
 - Qualitative issues
 - Quantitative issues
- Types of criteria
 - Ecological vs health-related
 - Direct impacts vs indirect impacts
 - Immediate vs long-term implications
 - Global vs local

(Source: www.moew.gov.ae)

> Apply basic principles

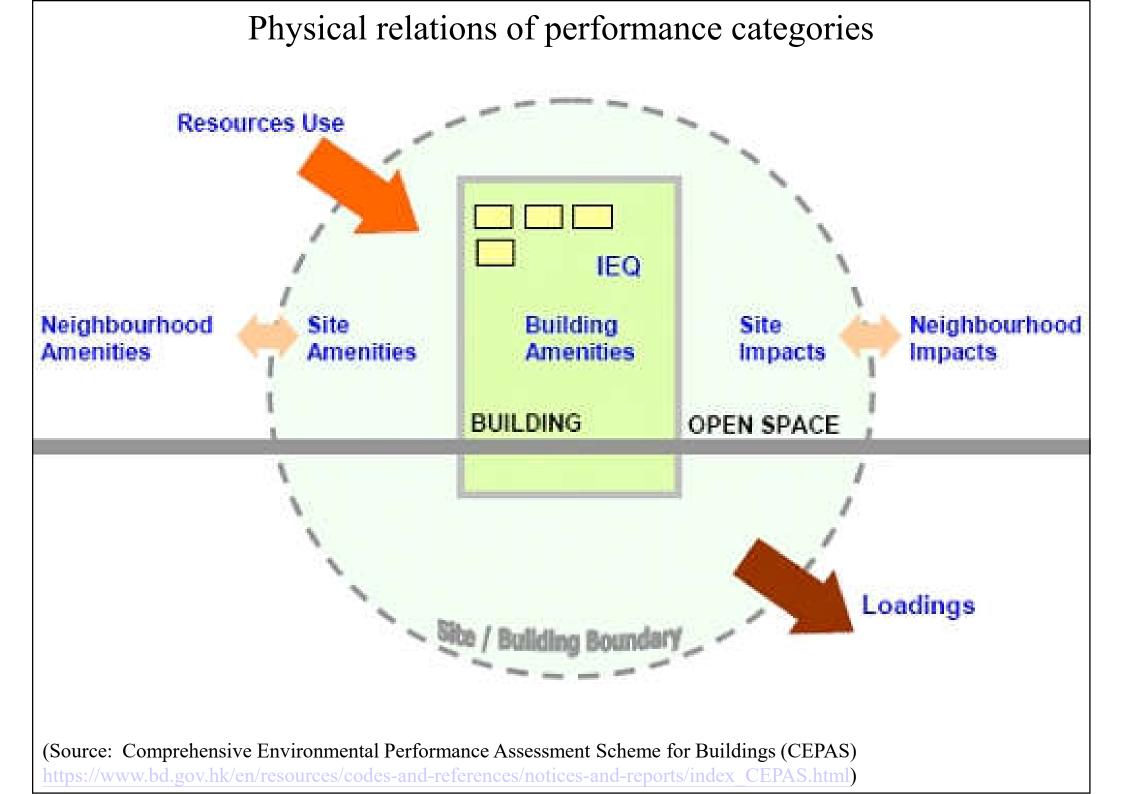
- site selection
- urban design
- landscape planning

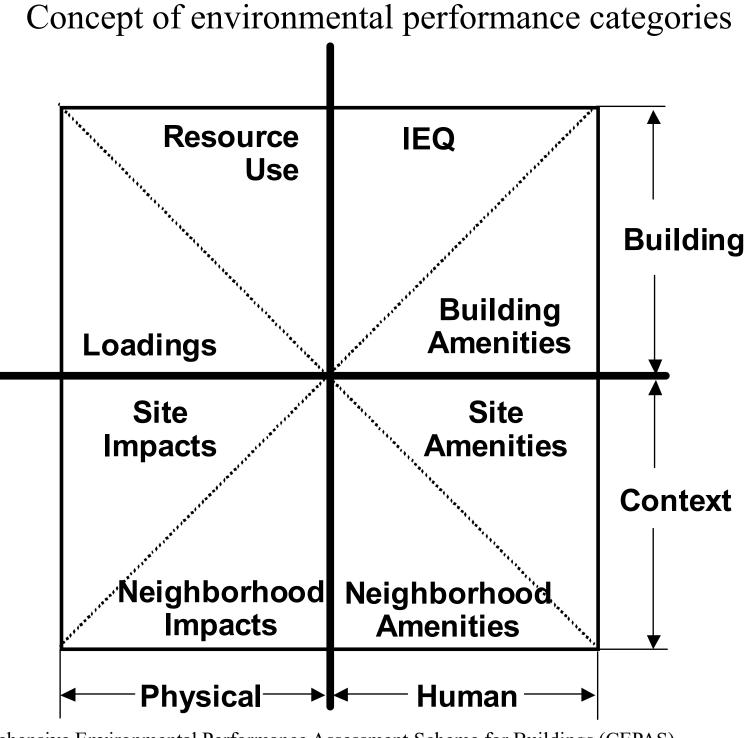
- CO₂ emissions
- acid rain
- ozone depletion
- rainforest depletion
- environmental policy
- transport strategy
- building maintenance

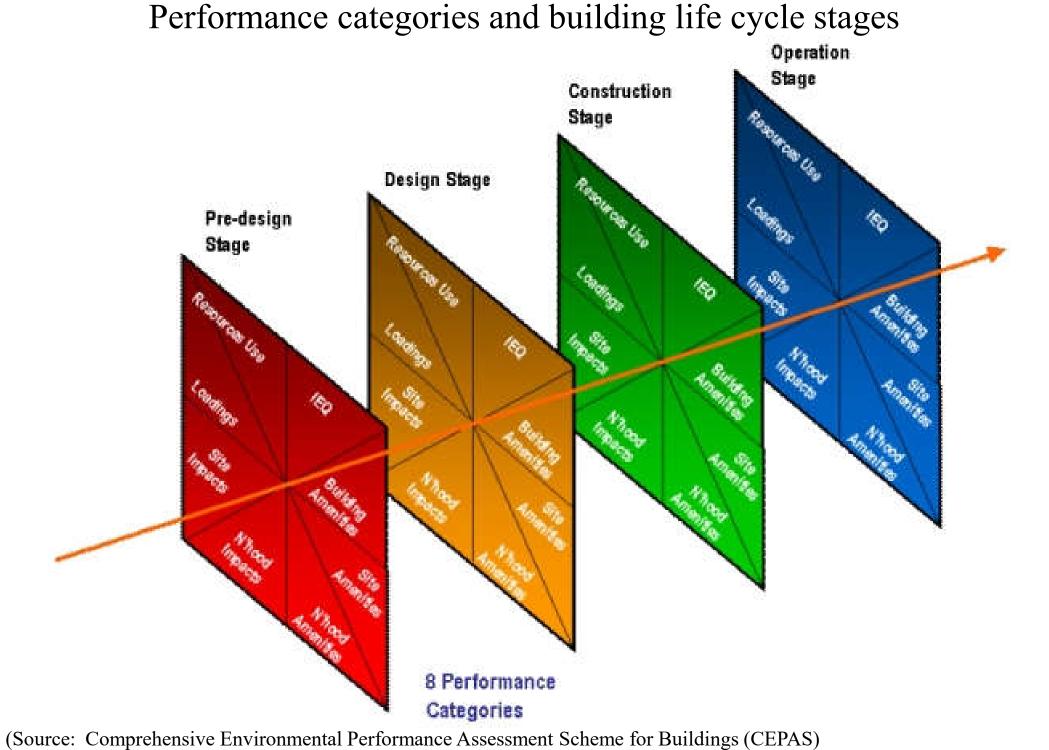

- energy performance
- renewable energy
- water conservation

Environmental
Criteria &
Factors

- material selection
- recycling of materials
- waste management
- disposal & reuse


- air quality
- thermal comfort
- lighting & noise
- hazardous materials


Building life cycle stages


(Source: Comprehensive Environmental Performance Assessment Scheme for Buildings (CEPAS)

https://www.bd.gov.hk/en/resources/codes-and-references/notices-and-reports/index CEPAS.html)

(Source: Comprehensive Environmental Performance Assessment Scheme for Buildings (CEPAS) https://www.bd.gov.hk/en/resources/codes-and-references/notices-and-reports/index CEPAS.html)

https://www.bd.gov.hk/en/resources/codes-and-references/notices-and-reports/index_CEPAS.html)

Aspects of assessment in green building and sustainable building

- Consumption of non renewable fuels
- Water consumption
- Materials consumption
- Land use

GREEN

BUILDING

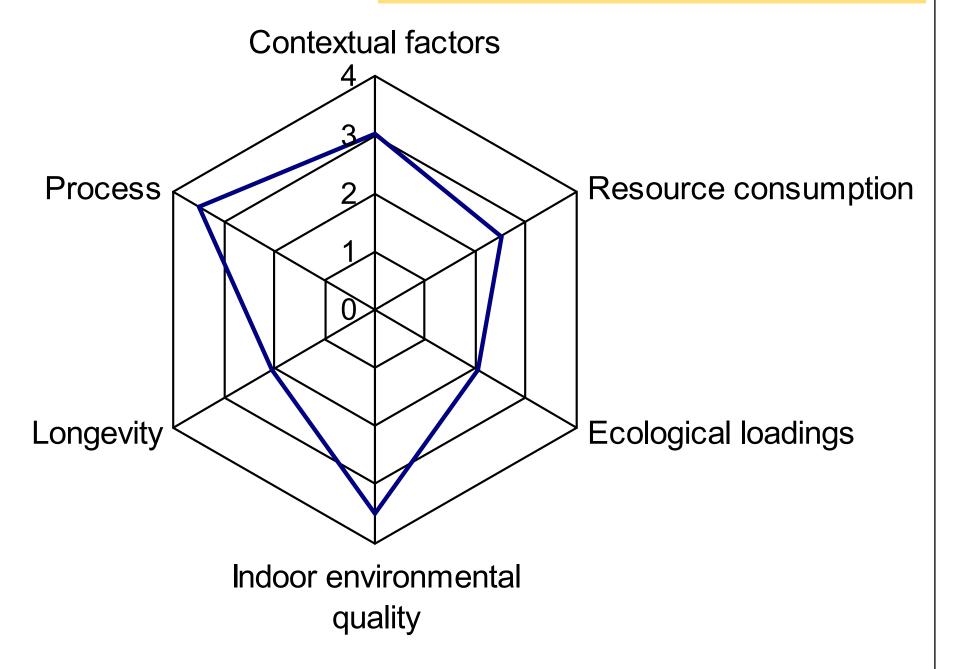
- Impacts on site ecology
- Greenhouse gas emissions
- Other atmospheric emissions
- Solid waste/liquid effluents
- Indoor air quality, lighting, acoustics
- Longevity, adaptability, flexibility
- Operations and maintenance

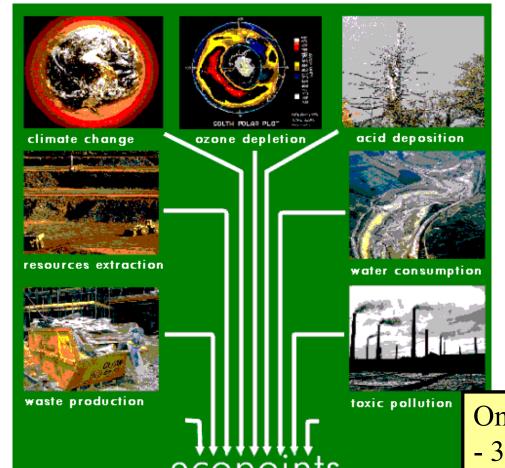
.....

- Social and cultural issues
- Economic considerations
- Urban planning/transportation issues

SUSTAINABLE BUILDING

(Source: https://www.researchgate.net/figure/Aspects-of-assessment-in-first-generation-green-building-methods-and-in-second-generation_fig1_259276430)


- Assessment process
 - Examine the <u>performance</u> of a building or its subsystem against a declared set of criteria
 - Usually voluntary (aim to stimulate the market)
- Scale of performance
 - Measure & assess relative performance
 - Assign 'points' or 'score' to various aspects
 - Quantitative criteria: relative to a baseline
 - Qualitative criteria: presence/absence of features



- Assessing multiple criteria
 - Indicate the 'best' overall performance
 - Methodology
 - Cost (or monetary value \$)
 - Equivalence method (e.g. air/water pollution index)
 - EcoCost (in common Gaia scale 0-1)
 - EcoPoint or EcoProfile
 - Weighting system
 - To show relative importance, scale and urgency

How to visualize assessment results?

Radar chart for assessing multiple criteria

How to combine different criteria?

"Ecopoint" concept in the ENVEST (environmental impact estimating) tool (UK BRE)

One "ecopoint" is equivalent to:

- 320 kWh electricity
- 83 m² Water: enough to fill 1,000 baths
- 65 miles by articulated truck
- landfilling 1.3 tonnes of waste
- manufacturing 3/4 tonnes brick (250 bricks)
- 540 tonne kms by sea freight
- 1.38 tonnes mineral extraction
- 300 miles of urban driving in new petrol car

(Source: UK BRE)

- Four major components:
 - <u>Categories</u>: a specific set of items relating to the environmental performance considered
 - Scoring system: performance measurement to indicate the number of possible points or credits
 - Weighting system: represents the relevance assigned to each specific category
 - Output: show the overall results of the environmental performance

(Source: https://www.intechopen.com/books/sustainability-assessment-at-the-21st-century/green-building-rating-systems-as-sustainability-assessment-tools-case-study-analysis)

Assessment methods

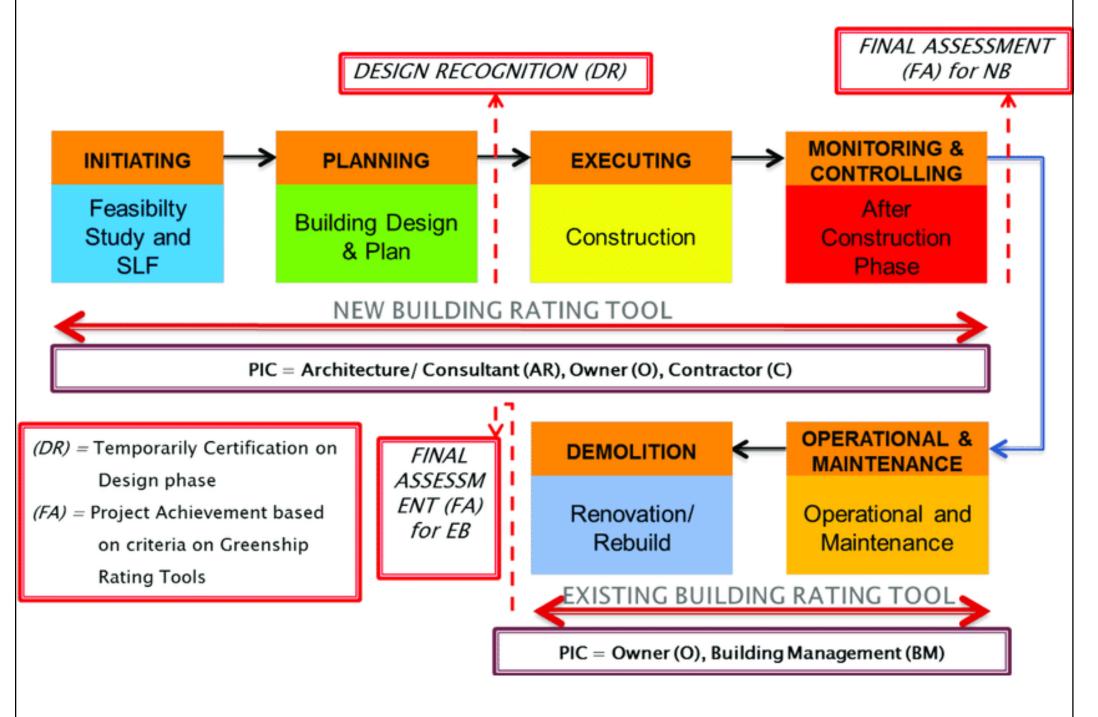
- Common approaches
 - Checklists or forms
 - Computer-based methods
 - Spreadsheet or computer programs
- Models used
 - Environment model
 - Product model
 - Life cycle model
- Data required: from simple to very detailed

Assessment methods

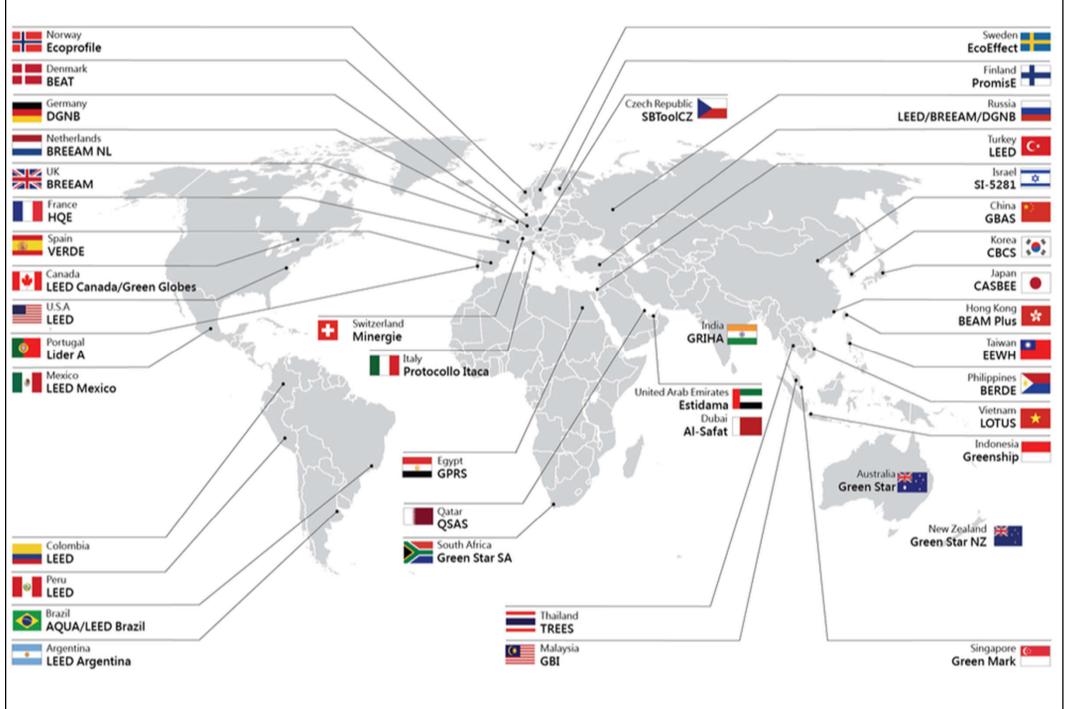
- Three ways to evaluate green buildings:
 - 1. Single attribute
 - Such as energy efficiency, alternative energy, recycled green materials/products
 - 2. Multiple attribute
 - Green building rating/assessment systems
 - Multi-criteria standard, points earned in various areas
 - 3. Life cycle assessment (LCA)

Trend to include more LCA elements

Full and quantitative accounting of environmental impacts


Assessment methods

- A green building assessment method is a tool for evaluating whether a building is green or not, and rank is given to the building after detailed assessment
- Assessment methods & tools:
 - Building environmental assessment
 - Green building rating
 - Green building certification & label
 - Sustainability assessment



Flow process of green building assessment and rating tools

(Source: https://www.researchgate.net/figure/Flow-Process-on-Green-Building-Assessment-on-Greenship-Rating-Tools-7 fig1 319046101)

Global green building assessment systems

(Source: https://gbtw.weebly.com/background.html)

Assessment methods

Further info: http://en.wikipedia.org/wiki/Green building

- Examples
 - Europe:
 - BREEAM (UK)
 - CEPHEUS & DGNB (Germany)
 - ECO-PRO (Germany)
 - EcoProP & PIMWAQ (Finland)
 - EQUER & HQE (France)
 - ECO QUANTUM (Netherlands)
 - MINERGIE (Switzerland)
 - BREEAM-NL (Netherlands)
 - VERDE (Spain)

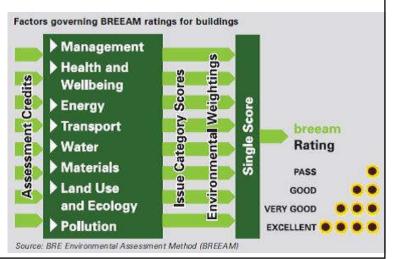
Assessment methods

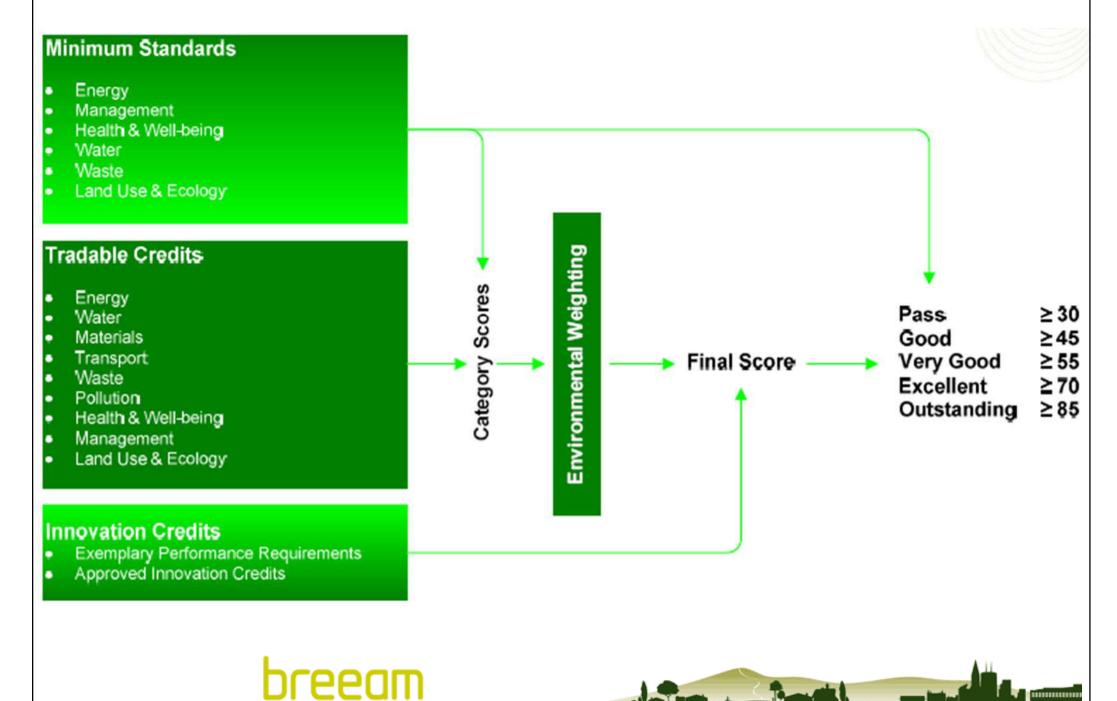
- Examples (cont'd)
 - Canada & USA:
 - BREEAM-Canada & BEPAC-Canada
 - LEED Canada
 - LEED (USA)
 - BEES (USA) (for building products)
 - GreenGlobes (Canada & USA)
 - Australia & New Zealand
 - Green Star (Australia)
 - Green Office Scheme (New Zealand)

Assessment methods

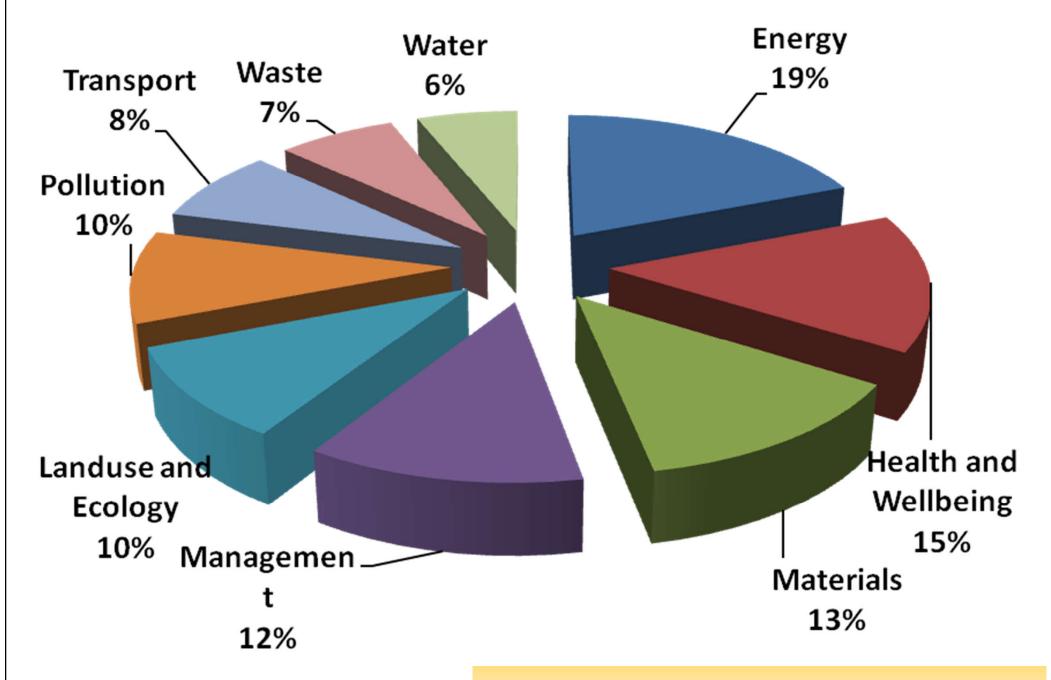
- Asian countries:
 - Japan Green Building Guide & CASBEE
 - Korea Green Building Rating System
 - GB/T 50378-2019 and GOBAS (Mainland China)
 - Taiwan Green Building Label (EEWH)
 - HK-BEAM/BEAM Plus and CEPAS (HK)
 - Green Mark Scheme (Singapore)
 - Green Building Index (Malaysia)
 - TGBRS, GRIHA, LEED India (India)

- BREEAM UK (since 1990)
 - Building Research Establishment Environmental Assessment Method
 - Used as a reference in many countries
 - BREAM family of assessment methods & tools
 - Any types of buildings (new and existing)
 - BREEAM International (outside of UK)
 - BREEAM In-Use (building management)
 - BREEAM Communities (planning stage)
 - Website: www.breeam.org/





- BREEAM UK (cont'd)
 - Credits awarded for a set of performance criteria
 - Energy, water, pollution, materials, transport, ecology and land use, health and well being
 - Construction & building operational management
 - A weighting system is applied to determine final rating
 - Stages of building development
 - Design & procurement
 - Management & operation
 - Post construction review



Assessment areas of BREEAM-UK

(Source: BRE, UK)

Assessment weightings of BREEAM-UK

Which are the most important aspects?

(Source: BRE, UK)

- BREEAM UK (cont'd)
 - Overall score rating:
 - Pass, Good, Very Good, Excellent, Outstanding
 - BREEAM Assessors
 - BREEAM Accredited Professional (BREEAM AP) and examination/training
 - Up to 3 credits if a BREEAM AP is engaged (BREEAM 2011)

To encourage using green building professionals

- LEED Green Building Rating System
 - Leadership in Energy & Environmental Design
 - By US Green Building Council (USGBC)
 - Current LEED systems:
 - New construction (LEED-NC) or Building design and construction (BD+C); Core and shell (LEED-CS)
 - Commercial interiors (LEED-CI) or Interior design and construction(ID+C)
 - Existing buildings operations & maintenance (LEED-EBOM) (O+M)
 - Neighborhood development (LEED-ND)
 - Homes, Cities and Communities; LEED Zero

LEED Green Building Rating

HOMES

NEIGHBORHOOD DEVELOPMENT

COMMERCIAL INTERIORS

CORE AND SHELL

NEW CONSTRUCTION & MAJOR RENOVATIONS

SCHOOLS

RETAIL

HEALTHCARE

EXISTING
BUILDINGS
OPERATIONS &
MAINTENANCE

BUILDING LIFE CYCLE

DESIGN

CONSTRUCTION

OPERATIONS

(Source: USGBC http://www.usgbc.org/leed; http://leed.usgbc.org/)

(Source: Green Building Academy)

- LEED Green Building Rating System
 - Evaluates and recognizes performance in accepted green design categories, including:

- Sustainable sites
- Water efficiency

- Energy and atmosphere
- Materials and resources


- Indoor environmental quality
- Innovation credits (

Website: http://www.usgbc.org/leed

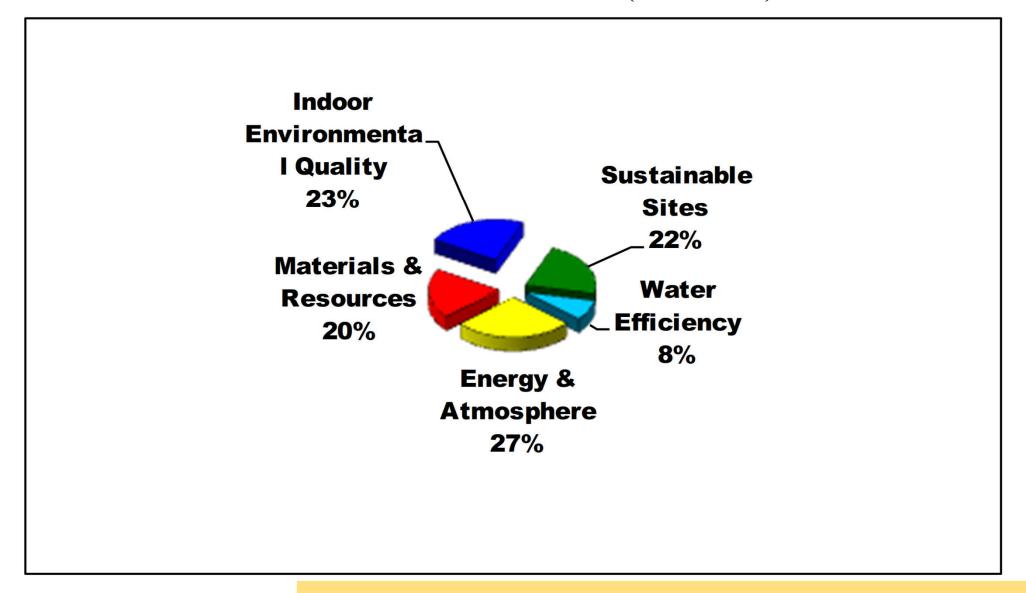
Different versions of LEED NC: v.1.0, v.2, v.2.1, v.3, v.4

- LEED Green Building Rating System
 - Whole-building approach encourages & guides a collaborative, integrated design & construction process
 - Optimizes environmental and economic factors
- Four levels of certification (for version 2 or before)

• LEED Certified 26 - 32 points

• Silver Level 33 - 38 points

• Gold Level 39 - 51 points


• Platinum Level 52+ points (69 possible)

LEED Accredited Professional

Which are the most important criteria?

LEED Point Distribution (version 2)

(Source: USGBC)

The relative importance of the criteria may change from one society to another one.

Phillip Merrill Environmental Center Headquarters Annapolis, Maryland

Owner: Chesapeake Bay Foundation

Project Team: Architect: SmithGroup, Inc.

Engineer: *SmithGroup, Inc.*P.Manager: *Synthesis, Inc.*

Contractor: Clark Construction Group
Consultant: Janet Harrison, Architect

Building Statistics:

Completion Date: November, 2000

Cost: \$6.36 M

Size: 30,600 gross square feet

Footprint: 12,000 square feet

Construction Type: 3B, Two Stories over Open Parking

Use Group: Business(B), Assembly(A-3), Storage(S-2)

Lot Size: 33 acres

Annual Energy Use: 23 kBtu/sf/year

Occupancy: 90 Staff

(Source: USGBC)

LEEDTM 1.0 Certification: PLATINUM

Notes from the Project Team: $LEED^{TM}$ was instrumental in conveying the importance of the sustainable elements of the design to CBF's Board of Trustees.

- Sustainable Sites
 - Site Selection: Erected in Smart Growth Funding Area on footprint of existing structure. 26.6 acres remain undisturbed in Land Trust.
 - Educational Model: Interpretive trails & demonstrations for public visitors
 - · Storm/Waste Water: All Composting Toilets & Bioretention/Wetland
 - Resource Protection: Woodland, Wetland, & Tidal Water Restoration
- Water Efficiency
 - Water: Rainwater Catchment & Reuse for Hand Washing & Irrigation
- Energy and Atmosphere
 - Domestic Hot Water: Thermomax-Solar Technology
 - Energy: Exceeds ASHRAE/IES Standard 90.1-1989 by 50%
 - **HVAC**: Natural Ventilation and Desiccant Dehumidification & Heat Recovery
 - Controls/Monitoring: Building Energy management System, "Green Light" notifies staff to open windows when outside conditions comply
 - Power Source: 30% Renewable with Geo-Exchange & Photovoltaics
 - Lighting: Daylight Harvesting and time clock lighting controls
 - · Rapidly Renewable: Bamboo, cork and linoleum floorings
 - Recycled Content: Metal roofing and siding, acoustic ceiling, ceramic tile, and MDF cabinetry
- Materials and Resources
 - Structure: Rapidly Renewable-Paralam Post, Beam, and Truss system
 - Envelope: Structural Insulated Panels (SIP) R-20 walls, R-30 roof
- Indoor Environmental Quality
 - Indoor Environmental Quality: CO₂ and VOC monitors.
 - Furniture: Small, open offices allow for communal space. Systems furniture allows flexible layout to accommodate "churn"

- LEED version 3 and new schemes
 - Include other criteria
- Locations & linkages
- Awareness & education

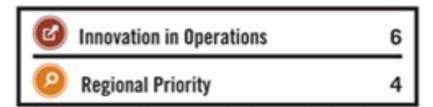
- P
- Regional priority
- LEED Professionals
 - LEED Green Associate
 - LEED AP (different types)
 - Bldg design & construction, O&M, Homes, Interior design, Neighborhood development

LEED® for New Construction

Total Possible Points**	110*
Sustainable Sites	26
Water Efficiency	10
Energy & Atmosphere	35
Materials & Resources	14
Indoor Environmental Quality	15

^{*} Out of a possible 100 points + 10 bonus points

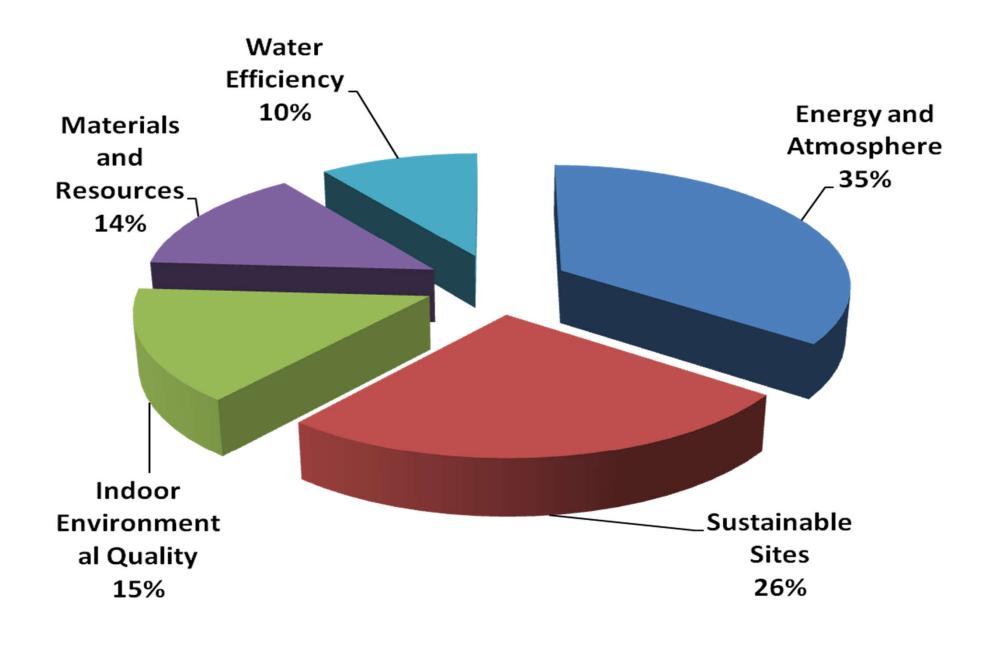
^{**} Certified 40+ points, Silver 50+ points, Gold 60+ points, Platinum 80+ points


©	Innovation in Design	6
0	Regional Priority	4

LEED[®] for Existing Buildings

Total Possible Points**	110*		
Sustainable Sites	26		
Water Efficiency	14		
Energy & Atmosphere	35		
Materials & Resources	10		
Indoor Environmental Quality	15		

^{*} Out of a possible 100 points + 10 bonus points

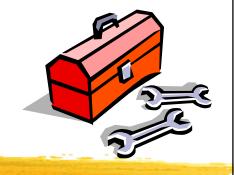

^{**} Certified 40+ points, Silver 50+ points, Gold 60+ points, Platinum 80+ points

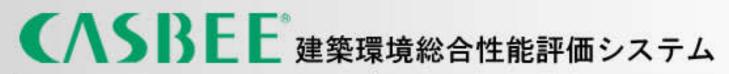
For LEED version 3

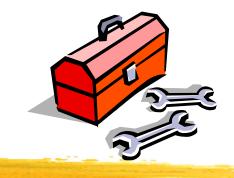
(Source: USGBC)

LEED NC point distribution (version 3, 2009)

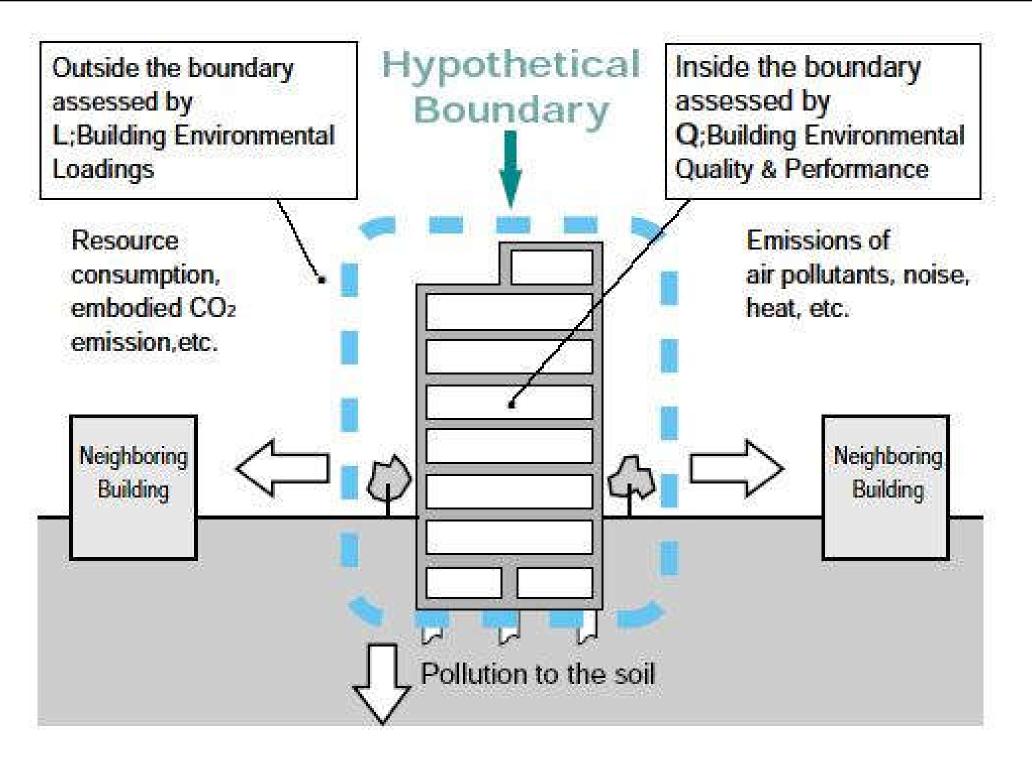
Which are the most important aspects?


(Source: USGBC)


- LEED v4 (launched in 2014)
 - Location & Transportation (LT)
 - Sustainable Site (SS)
 - Water Efficiency (WE)
 - Energy and Atmosphere (EA)
 - Materials and Resources (MR)
 - Indoor Environmental Quality (EQ)
 - Innovation (IN)
 - Regional Priority (RP)


- CASBEE (Comprehensive Assessment System for Building Environmental Efficiency), Japan
 - Tool-0: Pre-design
 - Tool-1: New Construction
 - Tool-2: Existing Buildings
 - Tool-3: Renovation
 - Website: www.ibec.or.jp/CASBEE/

CASBEE Building Lifecylce and Four Assessment Tools


Design process	Pre-design	design Design			Post-design			
Building lifecycle	Planning	New Basic design	Constru Design for execution	Construc	Operation	Renor Design	vation Construct ion	Operation
Tool-0 CASBEE for Pre-Design	Pre-design ass of building plann selection etc.	100			Labeling			
Tool-1 CASBEE for New Construction	Assessment of new construction (Assessment of design specification and anticipated performance)			Labeling			▼ Labeling	
Tool-2 CASBEE for Existing Building					Assessment of existing buildings (Assess the actual specification and performance realized at the time of assessment)			Assessment of existing buildings (Assess the actual specification and performance realized at the time of assessment)
Tool-3 CASBEE for Renovation								

(Source: IBEC, Japan)

- CASBEE systems:
- CASBEE for New Construction
- CASBEE for Interior Space
- CASBEE for Existing Building
- CASBEE for Renovation
- CASBEE for Heat Island (HI)
- CASBEE for Home (Detached House)
- CASBEE for Housing Unit
- CASBEE for Urban Development (UD)
- CASBEE for City

(Source: IBEC, Japan)

From Eco-efficiency of a building to BEE

Original definition:

Values of products or services

(WBCSD)

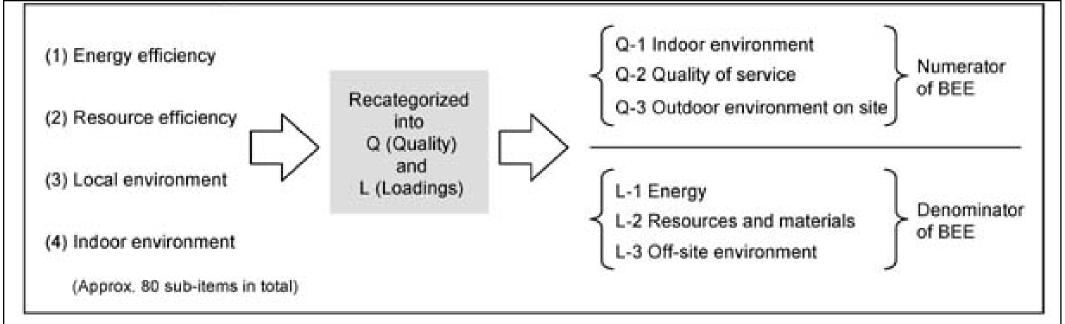
Environmental load unit

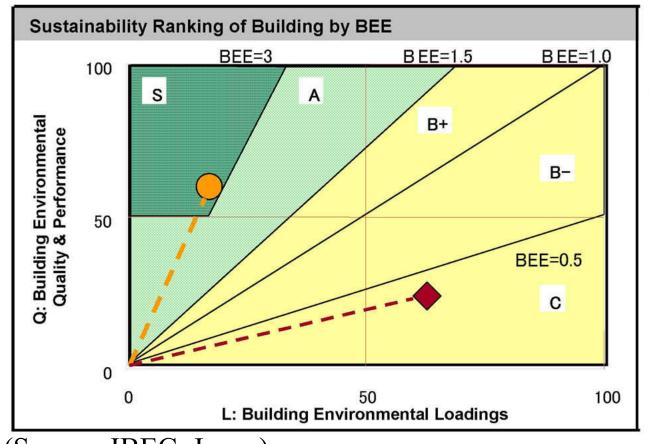
Modeled definition:

Beneficial output

Input +Non-beneficial output

Definition of BEE in CASBEE:


Building Environmental Quality & Performance


Building Environmental Loadings

Building Environmental Efficiency (BEE)

Building Environmental Quality & Performance
Building Environmental Loadings

(Source: IBEC, Japan)

(Source: IBEC, Japan)

: Ordinary Building

: Sustainable building (Sample)

CASBEE Ranking:

$$S = \star \star \star \star \star$$

$$A = \star \star \star \star$$

CASBEE[®]**評価内容**

CASBEE-新築(簡易版)

建物名称 NBF豊洲ガーデンフロント

建物用涂 事務所

建設地 東京都江東区豊洲5丁目6-7

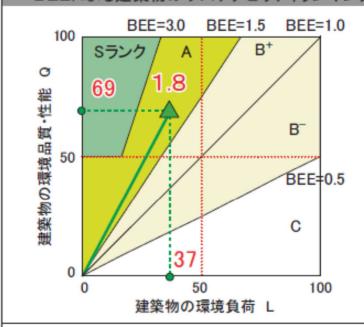
気候区分

地域•地区 準工業地域、準防火地域、第三種高度地区

竣工日 2007年9月30日 敷地面積 12.551.33m²

建築面積 5.092.29 m

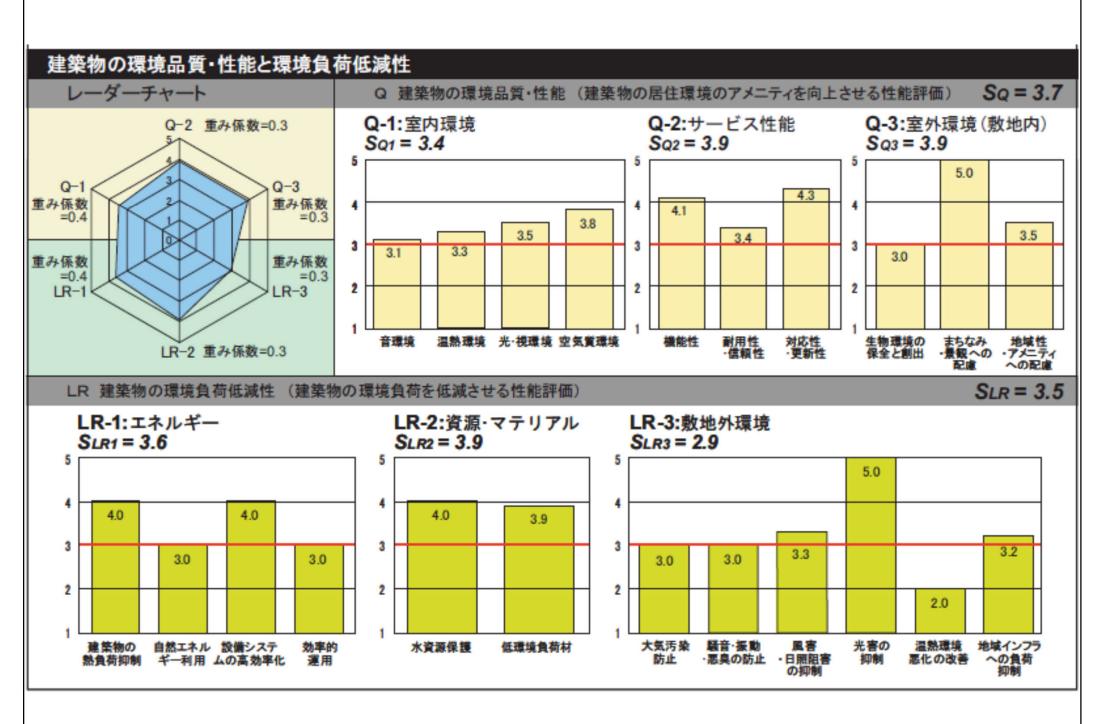
延床面積 36.310.82m²

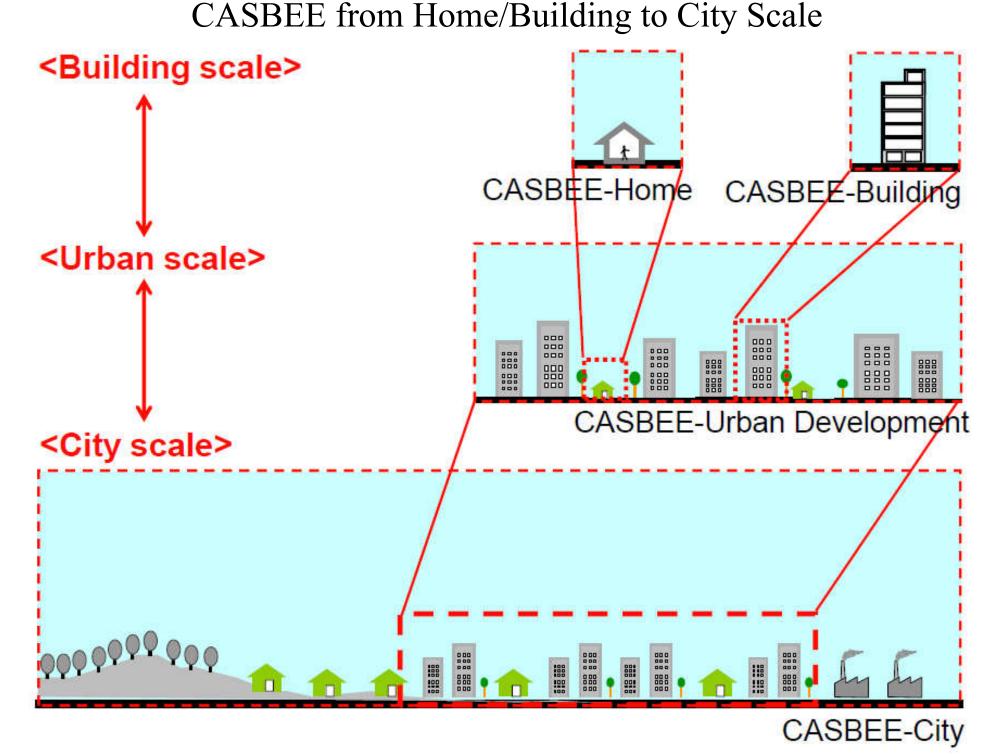

階数 地上10階

構造 S造

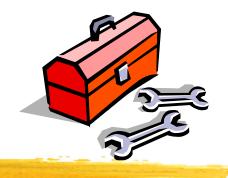
平均居住人員 5.660人

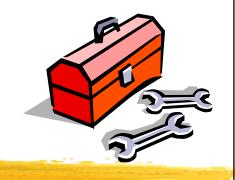
年間使用時間 2.500時間/年


(BEE: Building Environmental Efficiency) BEEによる建築物のサステナビリティランキング BEE=3.0 BEE=1.5 BEE=1.0 100 Sランク 1.8 69



BEE =
$$\frac{$$
建築物の環境品質・性能 Q $}{$ 建築物の環境負荷 L $}=\frac{25 \times (S_Q-1)}{25 \times (5-S_{LR})}=\frac{69.0}{37.0}=1.8$


(Source: IBEC, Japan)


(Source: IBEC, Japan)

(Adapted from CASBEE in Progress for Market Transformation in Japan, by Prof. Kazuo Iwamura, Tokyo City University)

- Green Mark (GM) Scheme, Singapore
 - Started 2005 (mandatory)
 - https://www1.bca.gov.sg/buildsg/sustainability/green-mark-certification-scheme
 - Categories:
 - Non-residential buildings (new & existing)
 - Residential buildings (new & existing)
 - Super low energy buildings
 - Existing schools, healthcare facilities
 - Healthier workplaces [office interior] (new office fitouts existing offices in operation)
 - Landed houses, restaurants, supermarket, retail
 - Infrastructure, district, data centres, laboratories, parks

- Green Mark (GM) Scheme, Singapore
 - Assessment criteria (new non-residential)
 - Energy Efficiency [79]
 - Water Efficiency [14]
 - Environmental Protection [32]
 - Indoor Environmental Quality [8]
 - Other Green Features and Innovation [7]
- BCA GREEN MARK
- GM ratings: max 140 + 20 bonus points
 - Platinum (90+), GoldPlus (85-90), Gold (75-85) or Certified (50-75)
- Re-assess every 3 years to maintain GM status

Green Mark: 2021 (GM: 2021) has 2 key shifts:

- (a) Aggressively raising energy efficiency standard with the aim of mainstream delivery of Super Low Energy (SLE) buildings;
- (b) Aligning with the United Nation (UN) Sustainable Development Goals (SDGs) to cover key sustainability outcomes

(Source: https://www1.bca.gov.sg/buildsg/sustainability/green-mark-certification-scheme/green-mark-2021)

- Green Building Index (GBI), Malaysia
 - Started 2009 (www.greenbuildingindex.org)
 - GBI Tools:
 - New Construction (NC)
 - Non-residential (NRNC) and residential (RNC)
 - Non-Residential Existing Building (NREB)
 - Data Centre, Retail, Hotel, Resort, Hospital
 - Township
 - Industrial New Construction (INC) & Industrial Existing Building (IEB)
 - Interiors (ID)

- Green Building Index (GBI), Malaysia
 - Six main criteria: [max. point for new construction]
 - Energy Efficiency (EE) [35]
 - Indoor Environment Quality (EQ) [21]
 - Sustainable Site Planning & Management (SM) [16]
 - Materials & Resources (MR) [11]
 - Water Efficiency (WE) [10]
 - Innovation (IN) [7]
 - Total score = 100
 - GBI ratings: Certified (50-65), Silver (66-75), Gold (76-85) and Platinum (86+)

Three tiers of GBI accreditation for buildings

GBI ACCREDITATION PANEL (GBIAP)

REGULATORY BODY

GBI CERTIFIERS

ASSESSMENT & ACCREDITATION

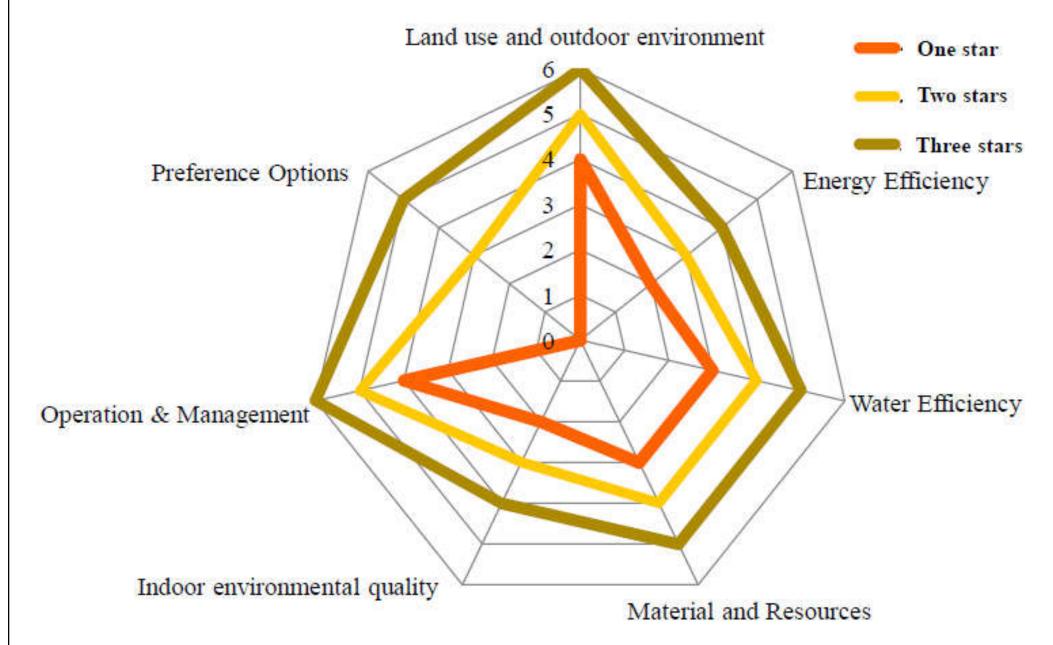
GBI FACILITATORS

GBI PROJECT DEVELOPMENT

(Source: https://www.greenbuildingindex.org/how-gbi-works/gbi-organisation/)

- Green Building Index (GBI), Malaysia
 - Assessment process:
 - Stage 1. Application & Registration
 - Stage 2. Design Assessment
 - Stage 3. Completion & Verification Assessment
 - Professionals:
 - GBI Accreditation Panel (GBIAP)
 - GBI Certifiers [assessment]
 - GBI Facilitators [consultancy]
 - GBI Commissioning Specialists (CXS)

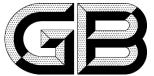
- Mainland China
 - Green Olympic Building Assessment System (GOBAS) (綠色奧運建築評核系統) (2006)
 - Developed from the Japan's CASBEE method
 - Applied mainly in Beijing
 - GB/T 50378-2019, Assessment Standard for Green Building (綠色建築評價標準)
 - Similar to LEED in structure and rating process
 - A three-star Green Building certificate will be awarded to the qualified buildings


Evaluation Standard for Green Building – China (Three Star System)

		General Items (40)							
	Grade	Land Use and Outdoor Environment (8)	Energy Efficiency (6)	Water Efficiency (6)	Material and Resources (7)	Indoor Environmental Quality (6)	Operation & Management (7)	Options (9)	
Residential Building	*	4	2	3	3	2	4		
	**	5	3	4	4	3	5	3	
	***	6	4	5	5	4	6	5	
Public Building		General Items (43)							
	Grade	Land use and outdoor environment (8)	Energy Efficiency (6)	Water Efficiency (6)	Material and Resources (8)	Indoor Environment Quality (6)	Operation & Management (7)	Options (14)	
	*	3	4	3	5	3	4	-	
	**	4	6	4	6	4	5	6	
	***	5	8	5	7	5	6	10	

(Source: Dr. JIANG Wei, WSP)

Evaluation Standard for Green Building – China Assessment categories and weighting


(Source: Dr. JIANG Wei, WSP)

Current tools

- Mainland China
 - Green building standard system
 - Design stage (technical standards)
- JEJ

- JGJ/T 229-2010 Green design standard of civil buildings
- JGJ/T 449-2018 Civil building green performance calculation standard
- Construction stage (national standards)

- GB/T 50640-2010 Assessment standard for green construction of building
- GB/T 50905-2014 Construction Code for green building
- Operation stage (technical standard)

- JGJ/T 391-2016 Technical standard for green building operation and maintenance
- Assessment standards (10 nos.)

Green building standard system in Mainland China

Green Building Standard System covers the whole building life cycle

Assessment Stage

- Assessment standard for green building (GB/T 50378)
- Assessment standard for green eco-district(GB/T 51255)
- Assessment standard for green campus(GB/T 51356)

Design Stage

- Code for green design of civil buildings(JGJ/T 229)
- Standard for green performance calculation of civil buildings(JGJ/T 449)

Construction Stage

- Evaluation standard for green construction of building(GB/T 50640)
- Code for green construction of building(GB/T 50905)

Retrofitting Stage

- Assessment standard for green retrofitting of existing building(GB/T 51141)
- Technical standard for green retrofitting of existing community(JGJ/T 425)

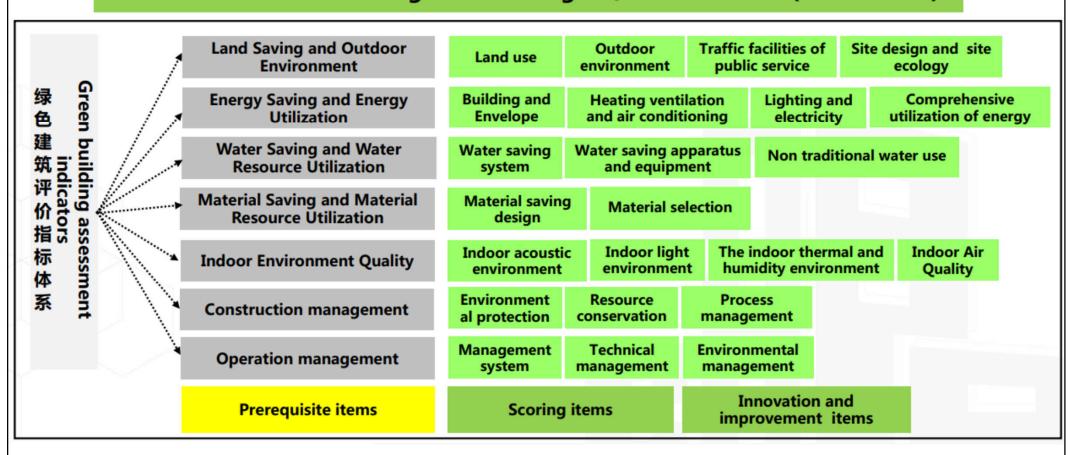
Operation Stage

- Technical code for operation and maintenance of green building(JGJ/T 391)
- Standard for test and assessment of green lights(GB/T 51268)

(Source: https://www.saarcenergy.org/wp-content/uploads/2020/06/Development-of-Green-Building-in-China-and-Main-Technical-Standards.pdf)

Green building assessment standard system in Mainland China UDC GB 中华人民共和国国家标准 Assessment standard for green building (GB/T 50378) GB/T 50378 - 2019 **Evaluation standard for green office building** (GB/T 50908) 绿色建筑评价标准 Assessment standard for green store building Assessment standard for green building (GB/T 51100) **Evaluation standard for green hospital building** New (GB/T 51153) **Building** Assessment standard for green hotel building (GB/T 51165) Green **Building** Assessment standard for green museum and exhibition building (GB/T 51148) Assessment Standard Existing Assessment standard for green retrofitting of System **Building** existing building (GB/T 51141) Industrial Assessment standard for green industrial building (GB/T 50878) Building Assessment standard for green eco-district (GB/T 51255)

(Source: https://www.saarcenergy.org/wp-content/uploads/2020/06/Development-of-Green-Building-in-China-and-Main-Technical-Standards.pdf)


(GB/T 51356)

Assessment standard for green campus

Area

Assessment criteria of GB/T 50378-2014 Assessment Standard for Green Building (2nd edition)

Assessment standard for green building GB/T 50378-2014 (2nd edition)

(Source: China Academy of Building Research)

Assessment criteria of GB/T 50378-2019 Assessment Standard for Green Building (3rd edition)

Assessment standard for green building GB/T 50378-2019 (3rd edition)

Safety & Durability Safety Durability Sound & Indoor air Water Indoor thermal Health & Comfort quality daylighting quality environment Transit & **Property** Occupancy Intelligent Service facility accessibility Convenience management operation Material saving Water saving Land saving **Energy saving** Resources saving & utilization & green material & utilization & utilization Site ecology and **Environmental Livability Outdoor physical environment** landscape

Five new performance assessment criteria

安全耐久 Safety and Durability 健康舒适 Health and Comfort 生活便利 Occupancy Convenience 资源节约 Resource Saving 环境宜居 Environment Livability

(Source: China Academy of Building Research)

Revised requirements in GB/T 50378-2019 Assessment Standard for Green Building (3rd edition)

提出了绿色建筑星级评价特殊要求

For 1~3 star green building, more high requirements shall be met.

总得分 Scores: Q=(Q0+Q1+Q2+Q3+Q4+Q5+QA)/10

	控制项 基础分值	Full	提高与创新项加分值					
	Basic score of control term	安全耐久 Safety and Durability	健康舒适 Health and Comfort	生活便利 Occupancy Convenience	资源节约 Resource Saving	环境宜居 Environment Livabillity	Bonus point of improvement & innovation	
预评价分值 Pre-evaluation score	400	100	100	80	200	100	100	
评价分值 Evaluation score	400	100	100	100	200	100	100	

星级确定:最低得分(每类指标满分值的30%)+全装修+总得分(60、70、85) The lowest score for 1-star, 2-star and 3-star is 60, 70 and 85 respectively.

(Source: China Academy of Building Research)

Current tools

- Taiwan Green Building Label (EEWH)
 - Nine sets of assessment criteria/indicators:
 - 1. Biodiversity 生物多樣性
- Ecology 2. Greenery 綠化量
 - 3. Water retention 基地保水
- Energy 節能 4. Energy efficiency 日常節能
 - 5. Carbon dioxide reduction CO₂減量
 - 6. Waste reduction 廢棄物減量
 - 7. Indoor environment 室內環境
 - 8. Water resources 水資源
 - 9. Wastewater and garbage 污水垃圾改善

Waste reduction 減廢

Health 健康

(Sources: http://gb.tabc.org.tw/, https://gbtw.weebly.com/)

Taiwan Green Building Label (EEWH) evaluation manuals

(Source: http://twgbqanda.com/english/; https://eewh.tw/)

Nine indicators & score for Taiwan Green Building Label (EEWH)

		New Grading Score			
Four categories	Nine Indicat	Benchmark Score	Highest Score	Subtotal	
	1.Biodiversity	2	9	27	
Ecology	2.Greenery	2	9		
	3.On-site Water Reten	2	9		
	4.Daily Energy Saving	Envelope	2	12	28
Energy Saving		AC	2	10	
		Lighting	2	6	
	5.CO ₂ Reduction	2	9	18	
Waste Reduction	6.Construction Waste Reduction		2		9
	7.Indoor Environment	2	12	27	
Health	8.Water Resource		2		9
Health	9.Sewage & Garbage Improvement		2		6

(Source: http://twgbqanda.com/english/)

Further Reading

- Building Environmental Assessment Tools:
 Current and Future Roles
 - http://www.sb05.com/academic/4&5_IssuePaper.pdf
- Green building rating tools [WGBC]
 https://www.worldgbc.org/rating-tools
- Green Building Standards and Certification Systems [WBDG]
 - http://www.wbdg.org/resources/gbs.php