Solutions to Quick Revision Study Guide Questions

CHAPTER 1

Q1. $\quad 0.01 \mathrm{~kg}$ of steam with a specific enthalpy of $2,700 \mathrm{~kJ} / \mathrm{kg}$ is mixed with 2.0 kg of dry air with a specific enthalpy of $20 \mathrm{~kJ} / \mathrm{kg}$. What is the specific enthalpy of the mixture?

Ans:

[Total enthalpy $=67$, hence specific enthalpy $=67 / 2=33.5 \mathrm{~kJ} / \mathrm{kg}$ dry air]
Q2. Moist air has a dry-bulb temperature of $30^{\circ} \mathrm{C}$, and a wet-bulb temperature of $20^{\circ} \mathrm{C}$. Use a Psychrometric Chart to find:
a. The percentage saturation Ans: [38.1\% (from 0.0104/0.0273 * 100)]
b. The moisture content Ans: [0.0104 kg/kg dry air]
c. The enthalpy Ans: [57 kJ/kg]
d. The specific volume Ans: [0.87 m ${ }^{3} / \mathrm{kg}$]
e. The dew-point temperature Ans: [14.5 ${ }^{\circ} \mathrm{C}$]

Q3. Moist air at $25^{\circ} \mathrm{C}$ dry-bulb and 50% saturation, undergoes a process so that its condition is changed to $40^{\circ} \mathrm{C}$ drybulb and 30% saturation.
Use a Psychrometric Chart to determine the change in specific enthalpy for the process.
Ans:
[28 kJ/kg (from 78.5-50.5)]
Q4. The air inside a room during winter is at $20^{\circ} \mathrm{C} \mathrm{db}$ and 40% saturation. If the temperature of the inside surface of a window is $9^{\circ} \mathrm{C}$, will condensation form on the window glass?
Ans:
[No. (from Dew-point temperature $=6^{\circ} \mathrm{C}$)]
Q5. A sling psychrometer measured the dry and wet-bulb temperatures of moist air as $27^{\circ} \mathrm{C}$ and $19^{\circ} \mathrm{C}$ respectively. Determine the moisture content from the relevant equation, given that:
(i) $\mathrm{p}_{\text {ss }}$ at $19^{\circ} \mathrm{C}$ is 2.196 kPa ,
(ii) The psychrometric constant is $6.66 \times 10^{-4} \mathrm{~K}^{-1}$

Ans:
[Equations: $p_{s s}-A \times p_{a t}\left(t_{b d}-t_{w b}\right)$; moisture content, $g=0.622 p_{s} /\left(p_{a t}-p_{s}\right)$
Hence: $p_{s}=2.196-(\{6.67 \times 0.0001\} \times 101.325\{27-19\})=1.655 \mathrm{kPa}$
Moisture content, $\mathbf{g}=0.622 \times 1.655 /(101.325-1.655)=0.0103 \mathrm{~kg} / \mathrm{kg}$ or 10.3
g / kg]

CHAPTER 2

Q1. Dry air flows over a heating coil and absorbs heat at the rate of 10 kW . If the air temperature and pressure immediately in front of the coil are 325 K and 1 bar respectively, and the mass flow rate is $0.5 \mathrm{~kg} / \mathrm{s}$, determine the temperature of the air leaving the coil.
Note any assumptions made.
Ans:
[Heat flow = Mass x Specific heat capacity x temperature difference.
Temperature difference $=10 /(1.01 \times 0.5)=19.8$
Therefore leaving temperature is $325+19.8=344.8 \mathrm{~K}$
Assumption: Specific heat capacity of dry air is $1.01 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$]
Q2. If moist air is at standard atmospheric pressure and the partial pressure of the water vapour is 2.486 kPa , what is the partial pressure of the dry air?
Ans:
[If standard atmospheric pressure is taken as 101.325 kPa , then partial pressure of water vapour will be $101.325-2.486=98.839 \mathrm{kPa}$]

If the moist air is now cooled (assume constant pressure), at what temperature will the water vapour start to condense?
Ans:
[Moisture content, $g=0.622 p_{s} /\left(p_{a t}-p_{s}\right)$
$=(0.622 \times 2.486) /(101.325-2.486)=0.0156 \mathrm{~kg} / \mathrm{kg}$
From chart: dew point temperature $=21^{\circ} \mathrm{C}$]
Q3. A person loses water by sweating at an average of 0.072 kg per hour. Assuming evaporating is taking place at $30^{\circ} \mathrm{C}$, what rate of cooling does this represent?
Ans:
[Latent cooling will be: ($0.072 / 3600$) kg/s $\times 2450 \mathrm{~kJ} / \mathrm{kg}=0.049 \mathrm{~kW}$ or 49 W]

Q4. If air at $10^{\circ} \mathrm{C}$ and 100% saturation is sensibly heated to $22^{\circ} \mathrm{C}$, what will be the percentage saturation at the new condition?

Ans:

[From chart: 46\%]

