MEBS6006 Environmental Services I http://www.hku.hk/bse/MEBS6006/

Load Estimation

Dr. Benjamin P.L. Ho Department of Mechanical Engineering The University of Hong Kong E-mail: benjamin.ho@hku.hk

Oct 2011

Contents

This lecture is the first of the 2 lectures on loading and energy calculation.

The first lecture will give a brief review of the various components contributing to cooling/heating load of an occupied space.

- Basic Concepts
- Outdoor Design Conditions
- Indoor Design Conditions
- Cooling Load Components
- Cooling Load Principles
- Cooling Coil Load
- Heating Load

- Heat transfer mechanism
 - Conduction
 - Convection
 - Radiation

- Thermal properties of building materials
 - Overall thermal transmittance (U-value) (W/m²K)
 - Thermal conductivity *k* (W/mK)
 - thermal conductance = kA/L (W/K) $Q = UA (\Delta t)$
 - heat transfer coefficient = k/L, (W/m²K)
 - Thermal capacity (specific heat) (kJ/kgK)

Four forms of heat transfer

(Source: Food and Agriculture Organization of the United Nations, www.fao.org)

- Heat transfer basic relationships (for air at sea level)
 - Sensible heat transfer rate:
 - $q_{\text{sensible}} = 1.23$ (air flow rate, L/s) (Δt) (why?)
 - Latent heat transfer rate:
 - $q_{\text{latent}} = 3010$ (air flow rate, L/s) (Δw) (why?)
 - Total heat transfer rate:
 - $q_{\text{total}} = 1.2$ (Flow rate, L/s) (Δh) (why?)
 - $q_{\text{total}} = q_{\text{sensible}} + q_{\text{latent}}$

• Thermal load

- The amount of heat that must be added or removed from the space to maintain the proper temperature in the space
- When thermal loads push conditions outside of the comfort range, HVAC systems are used to bring the thermal conditions back to comfort conditions

- Purpose of HVAC load estimation
 - Calculate peak design loads (cooling/heating)
 - Estimate likely plant/equipment capacity or size
 - Provide info for HVAC design e.g. load profiles
 - Form the basis for building energy analysis
- Cooling load is our main target
 - Important for warm climates & summer design
 - Affect building performance & its first cost

- General procedure for cooling load calculations
 - Obtain the characteristics of the building, building materials, components, etc. from building plans and specifications
 - Determine the building location, orientation, external shading (like adjacent buildings)
 - Obtain appropriate weather data and select outdoor design conditions
 - Select indoor design conditions (include permissible variations and control limits)

- General procedure for cooling load calculations (cont'd)
 - Obtain a proposed schedule of lighting, occupants, internal equipment appliances and processes that would contribute to internal thermal load
 - Select the time of day and month for the cooling load calculation
 - Calculate the space cooling load at design conditions
 - Assess the cooling loads at several different time or a design day to find out the peak design load

Total Cooling Load - Tons

January Through June

Cooling load profiles

- A building survey will help us achieve a realistic estimate of thermal loads
 - Orientation of the building
 - Use of spaces
 - Physical dimensions of spaces
 - Ceiling height
 - Columns and beams
 - Construction materials
 - Surrounding conditions
 - Windows, doors, stairways

(Source: ASHRAE Handbook Fundamentals 2005)

- Key info for load estimation
 - People (number or density, duration of occupancy, nature of activity)
 - Lighting (W/m², types of luminaire and lamp)
 - Appliances (wattage, location, usage)
 - Ventilation (criteria, requirements)
 - Thermal storage (if any)
 - Continuous or intermittent operation

- Typical HVAC load design process
 - 1. Rough estimates of design loads & energy use
 - Such as by rules of thumb & floor areas
 - See "Cooling Load Check Figures"
 - See references for some examples of databooks
 - 2. Develop & assess more info (design criteria, building info, system info)
 - Building layouts & plans are developed
 - 3. Perform detailed load & energy calculations

- They are used to calculate design space loads
- Climatic design information
 - General info: e.g. latitude, longitude, altitude, atmospheric pressure
 - Outdoor design conditions include
 - Derived from statistical analysis of weather data
 - Typical data can be found in handbooks/databooks, such as ASHRAE Fundamentals Handbook

- Climatic design info from ASHRAE
 - Previous data & method (before 1997)
 - For Summer (Jun to Sep) & Winter (Dec, Jan, Feb)
 - Based on 1%, 2.5% & 5% nos. hours of occurrence
 - New method (ASHRAE Fundamentals 2001+):
 - Based on <u>annual</u> percentiles and cumulative frequency of occurrence, e.g. 0.4%, 1%, 2% (of whole year)
 - More info on coincident conditions
 - Findings obtained from ASHRAE research projects
 - Data can be found on a relevant CD-ROM

- Climatic design conditions (ASHRAE, 2009):
 - Annual heating & humidif. design conditions
 - Coldest month
 - Heating dry-bulb (DB) temp.
 - Humidification dew point (DP)/ mean coincident drybulb temp. (MCDB) and humidity ratio (HR)
 - Coldest month wind speed (WS)/mean coincident drybulb temp. (MCDB)
 - Mean coincident wind speed (MCWS) & prevailing coincident wind direction (PCWD) to 99.6% DB

- Climatic design conditions (ASHRAE, 2009):
 - Cooling and dehumidification design conditions
 - Hottest month and DB range
 - <u>Cooling DB/MCWB</u>: Dry-bulb temp. (DB) + Mean coincident wet-bulb temp. (MCWB)
 - <u>Evaporation WB/MCDB</u>: Web-bulb temp. (WB) + Mean coincident dry-bulb temp. (MCDB)
 - MCWS/PCWD to 0.4% DB
 - <u>Dehumidification DP/MCDB and HR</u>: Dew-point temp.
 (DP) + MDB + Humidity ratio (HR)
 - Enthalpy/MCDB

- Climatic design conditions (ASHRAE, 2009):
 - Extreme annual design conditions
 - Monthly climatic design conditions
 - Temperature, degree-days and degree-hours
 - Monthly design DB and mean coincident WB
 - Monthly design WB and mean coincident DB
 - Mean daily temperature range
 - Clear sky solar irradiance

- Other sources of climatic info:
 - Joint frequency tables of psychrometric conditions
 - Annual, monthly and hourly data
 - Degree-days (cooling/heating) & climatic normals
 - To classify climate characteristics
 - Typical year data sets (1 year: 8,760 hours)
 - For energy calculations & analysis

Recommended Outdoor Design Conditions for Hong Kong

Location	Hong Kong (latitude 22° 18' N, longitude 114° 10' E, elevation 33 m)										
Weather station	Royal Observatory Hong Kong										
Summer months	June to September (four hottest months), total 2928 hours										
Winter months	December, January	December, January & February (three coldest months), total 2160 hours									
Design temperatures:	For comfort HV summer 2.5% or a winter 97.5% or a	VAC (based on nnualised 1% and nnualised 99.3%)	For critical proc summer 1% or and winter 99% or ar	esses (based on nualised 0.4% and nualised 99.6%)							
	Summer	Winter	Summer	Winter							
DDB / CWB	32.0 °C / 26.9 °C	9.5 °C / 6.7 °C	32.6 °C / 27.0 °C	8.2 °C / 6.0 °C							
CDB / DWB	31.0 °C / 27.5 °C	31.3 °C / 27.8 °C	9.1 °C / 5.0 °C								

- Note: 1. DDB is the design dry-bulb and CWB is the coincident wet-bulb temperature with it; DWB is the design wet-bulb and CDB is the coincident dry-bulb with it.
 - 2. The design temperatures and daily ranges were determined based on hourly data for the 35-year period from 1960 to 1994; extreme temperatures were determined based on extreme values between 1884-1939 and 1947-1994.

(Source: Research findings from Dr. Sam C M Hui)

Recommended Outdoor Design Conditions for Hong Kong (cont'd)

Extreme	Hottest month: Ju	ıly	Coldest month: January			
temperatures:	mean DBT = 28.6	°C	mean DBT = 15.7 °C			
	absolute max. DE	3T = 36.1 °C	absolute min. DBT = 0.0 °C			
	mean daily max.	DBT = 25.7 °C	mean daily min. DBT = 20.9 °C			
Diurnal range:	Summer	Winter	Whole year			
- Mean DBT	28.2	16.4	22.8			
- Daily range	4.95	5.01	5.0			
Wind data:	Summer	Winter	Whole year			
- Wind direction	090 (East)	070 (N 70° E)	080 (N 80° E)			
- Wind speed	5.7 m/s	6.8 m/s	6.3 m/s			

Note: 3. Wind data are the prevailing wind data based on the weather summary for the 30year period 1960-1990. Wind direction is the prevailing wind direction in degrees clockwise from north and the wind speed is the mean prevailing wind speed.

Indoor Design Conditions

- Basic design parameters: (for thermal comfort)
 - Air temp. & air movement
 - Typical: summer 24-26 °C; winter 21-23 °C
 - Air velocity: summer < 0.25 m/s; winter < 0.15 m/s
 - Relative humidity
 - Summer: 40-50% (preferred), 30-65 (tolerable)
 - Winter: 25-30% (with humidifier); not specified (w/o humidifier)
 - See also ASHRAE Standard 55-2004
 - ASHRAE comfort zone

ASHRAE Comfort Zones (based on 2004 version of ASHRAE Standard 55)

Indoor Design Conditions

- Indoor air quality: (for health & well-being)
 - Air contaminants
 - e.g. particulates, VOC, radon, bioeffluents
 - Outdoor ventilation rate provided
 - ASHRAE Standard 62-2007
 - Air cleanliness (e.g. for processing), air movement
- Other design parameters:
 - Sound level (noise criteria)
 - Pressure differential between the space & surroundings (e.g. +ve to prevent infiltration)

Type of area	Recommended NC or RC range (dB)
Hotel guest rooms	30–35
Office	
Private	30–35
Conference	25-30
Open	30–35
Computer equipment	40–45
Hospital, private	25-30
Churches	25-30
Movie theaters	30–35

(NC = noise critera; RC = room criteria)

* Remark: buildings in HK often have higher NC, say add 5-10 dB (more noisy).

• External

- 1. Heat gain through exterior walls and roofs
- 2. Solar heat gain through fenestrations (windows)
- 3. Conductive heat gain through fenestrations
- 4. Heat gain through partitions & interior doors

• Internal

- 1. People
- 2. Electric lights
- 3. Equipment and appliances

- Infiltration
 - Air leakage and moisture migration, e.g. flow of outdoor air into a building through cracks, unintentional openings, normal use of exterior doors for entrance
- <u>System (HVAC)</u>
 - Outdoor ventilation air
 - System heat gain: duct leakage & heat gain, reheat, fan & pump energy, energy recovery

- Total cooling load
 - Sensible cooling load + Latent cooling load
 - = Σ (sensible items) + Σ (latent items)
- Which components have latent loads? Which only have sensible load? Why?
- Three major parts for load calculation
 - External cooling load
 - Internal cooling load
 - Ventilation and infiltration air

	Total	Heat, W	Sensible	Latent	% Sensible	% Sensible Heat that is		
		Adult	Adjusted,	Heat,	Heat,	Radiant ^o		
Degree of Activity	Male	M/F ^a	W	W	Low V	High V		
Seated at theater	Theater, matinee	115	95	65	30			
Seated at theater, night	Theater, night	115	105	70	35	60	27	
Seated, very light work	Offices, hotels, apartments	130	115	70	45			
Moderately active office work	Offices, hotels, apartments	140	130	75	55			
Standing, light work; walking	Department store; retail store	160	130	75	55	58	38	
Walking, standing	Drug store, bank	160	145	75	70			
Sedentary work	Restaurant ^c	145	160	80	80			
Light bench work	Factory	235	220	80	140			
Moderate dancing	Dance hall	265	250	90	160	49	35	
Walking 4.8 km/h; light machine work	Factory	295	295	110	185			
Bowling ^d	Bowling alley	440	425	170	255			
Heavy work	Factory	440	425	170	255	54	19	
Heavy machine work; lifting	Factory	470	470	185	285			
Athletics	Gymnasium	585	525	210	315			

Table 1 Representative Rates at Which Heat and Moisture Are Given Off by Human Beings in Different States of Activity

Notes:

 Tabulated values are based on 24°C room dry-bulb temperature. For 27°C room dry bulb, the total heat remains the same, but the sensible heat values should be decreased by approximately 20%, and the latent heat values increased accordingly.

2. Also refer to Table 4. Chapter 8, for additional rates of metabolic heat generation.

3. All values are rounded to nearest 5 W.

^aAdjusted heat gain is based on normal percentage of men, women, and children for the application listed, with the postulate that the gain from an adult female is 85% of that for an adult male, and that the gain from a child is 75% of that for an adult male.

^b Values approximated from data in Table 6. Chapter 8, where is air velocity with limits shown in that table.

°Adjusted heat gain includes 18 W for food per individual (9 W sensible and 9 W latent).

^dFigure one person per alley actually bowling, and all others as sitting (117 W) or standing or walking slowly (231 W).

Fig. 10 Solar Angles for Vertical and Horizontal Surfaces

Fig. 26 Instantaneous Heat Balance for Sunlit Glazing Material

- Cooling load calculation method
 - HB / RTS method (ASHRAE Fundamentals 2009)
 - TFM method / TETD/TA method
 - CLTD/SCL/CLF method (older versions of Fundamentals)
 - It is a one-step, simple calculation procedure developed by ASHRAE
 - CLTD = cooling load temperature difference
 - SCL = solar cooling load
 - CLF = cooling load factor
 - See ASHRAE Handbook Fundamentals for details
 - Tables for CLTD, SCL and CLF

• External

- Roofs, walls, and glass conduction
 - q = UA (CLTD) U = U-value; A = area
- Solar load through glass
 - q = A (SC) (SCL) SC = shading coefficient
 - For unshaded area and shaded area
- Partitions, ceilings, floors

•
$$q = UA (t_{adjacent} - t_{inside})$$

- Internal
 - People
 - $q_{\text{sensible}} = N$ (Sensible heat gain) (CLF)
 - $q_{\text{latent}} = N$ (Latent heat gain)
 - Lights
 - $q = \text{Watt x } F_{\text{ul}} \times F_{\text{sa}} \text{ (CLF)}$
 - $F_{ul} = lighting$ use factor; $F_{sa} = special$ allowance factor
 - Appliances
 - $q_{\text{sensible}} = q_{\text{input}} \text{ x usage factors (CLF)}$
 - $q_{\text{latent}} = q_{\text{input}} \text{ x load factor (CLF)}$

- Ventilation and infiltration air
 - $q_{\text{sensible}} = 1.23 \ Q \ (t_{\text{outside}} t_{\text{inside}})$
 - $q_{\text{latent}} = 3010 \ Q \ (w_{\text{outside}} w_{\text{inside}})$
 - $q_{\text{total}} = 1.2 \ Q \ (h_{\text{outside}} h_{\text{inside}})$
- System heat gain
 - Fan heat gain
 - Duct heat gain and leakage
 - Ceiling return air plenum

Schematic diagram of typical return air plenum

Cooling Load Principles

- Terminology:
 - <u>Space</u> a volume w/o a partition, or a partitioned room, or group of rooms
 - <u>Room</u> an enclosed space (a single load)
 - <u>Zone</u> a space, or several rooms, or units of space having some sort of coincident loads or similar operating characteristics
 - Thermal zoning

Cooling Load Principles

Definitions

- <u>Space heat gain</u>: instantaneous rate of heat gain that enters into or is generated within a space
- <u>Space cooling load</u>: the rate at which heat must be removed from the space to maintain a constant space air temperature
- <u>Space heat extraction rate</u>: the actual rate of heat removal when the space air temp. may swing
- <u>Cooling coil load</u>: the rate at which energy is removed at a cooling coil serving the space

Conversion of heat gain into cooling load

Cooling Load Principles

- Instantaneous heat gain vs space cooling loads
 - They are NOT the same
- Effect of heat storage
 - Night shutdown period
 - HVAC is switched off. What happens to the space?
 - Cool-down or warm-up period
 - When HVAC system begins to operate
 - Need to cool or warm the building fabric
 - Conditioning period
 - Space air temperature within the limits

Thermal Storage Effect in Cooling Load from Lights

(Source: ASHRAE Handbook Fundamentals 2005)

Cooling Load Principles

- Space load and equipment load
 - Space heat gain (sensible, latent, total)
 - Space cooling / heating load [at building]
 - Space heat extraction rate
 - Cooling / heating coil load [at air-side system]
 - Refrigeration load [*at the chiller plant*]
- Instantaneous heat gain
 - Convective heat
 - Radiative heat (heat absorption)

Convective and radiative heat in a conditioned space

⁽Source: Wang, S. K., 2001. Handbook of Air Conditioning and Refrigeration, 2nd ed.)

Sensible heat gains	Convective (%)	Radiative (%)
Solar radiation with internal shading	42	58
Fluorescent lights	50	50
Occupants	67	33
External wall, inner surface	40	60

(Source: Wang, S. K., 2001. Handbook of Air Conditioning and Refrigeration, 2nd ed.)

(Source: Wang, S. K., 2001. Handbook of Air Conditioning and Refrigeration, 2nd ed.)

(Source: Wang, S. K., 2001. Handbook of Air Conditioning and Refrigeration, 2nd ed.)

Cooling Load Principles

- Cooling load profiles
 - Shows the variation of space cooling load
 - Such as 24-hr cycle
 - Useful for building operation & energy analysis
 - What factors will affect load profiles?
- Peak load and block load
 - Peak load = max. cooling load
 - Block load = sum of zone loads at a specific time

Cooling load profiles

North

South

Block load and thermal zoning

53

Cooling loads due to windows at different orientations

Profiles of solar heat gain (July) (for latitude 48 deg N)

Solar cooling load vs. heat gain (July, west) (latitude 48 deg N)

Cooling Load Principles

- Moisture transfer
 - Two paths:
 - Moisture migrates in building envelope
 - Air leakage (infiltration or exfiltration)
 - If slight RH variation is acceptable, then storage effect of moisture can be ignored
 - Latent heat gain = latent cooling load (instantaneously)
- What happens if both temp. & RH need to be controlled?

Cooling Coil Load

- Cooling coil load consists of:
 - Space cooling load (sensible & latent)
 - Supply system heat gain (fan + air duct)
 - Return system heat gain (plenum + fan + air duct)
 - Load due to outdoor ventilation rates (or ventilation load)
- Do you know how to construct a summer air conditioning cycle on a psychrometric chart?
 - See also notes in Psychrometrics

(Source: Wang, S. K., 2001. Handbook of Air Conditioning and Refrigeration, 2nd ed.)

Cooling Coil Load

• Space cooling load

Supply airflow (L/s) = $\frac{\text{Sensible load (kW)}}{1.2 \times \Delta t}$

- To determine supply air flow rate & size of air system, ducts, terminals, diffusers
- It is a component of cooling coil load
- Infiltration heat gain is an instant. cooling load
- Cooling coil load
 - To determine the size of cooling coil & refrigeration system
 - Remember, ventilation load is a coil load

Heating Load

- Design heating load
 - Max. heat energy required to maintain winter indoor design temp.
 - Usually occurs before sunrise on the coldest days
 - Include transmission losses & infiltration/ventilation
 - Assumptions:
 - All heating losses are instantaneous heating loads
 - Credit for solar & internal heat gains is <u>not</u> included
 - Latent heat often not considered (unless w/ humidifier)
 - Thermal storage effect of building structure is ignored

Heating Load

- A simplified approach to evaluate worst-case conditions based on
 - Design interior and exterior conditions
 - Including infiltration and/or ventilation
 - No solar effect (at night or on cloudy winter days)
 - Before the presence of people, light, and appliances has an offsetting effect
- Also, a warm-up/safety allowance of 20-25% is fairly common

Table 12 Summary of Loads, Equations, and References for Calculating Design Heating Loads

(Source: ASHRAE Handbook Fundamentals 2005)

References

- Air Conditioning and Refrigeration Engineering (Wang and Norton, 2000)
 - Chapter 6 Load Calculations
- ASHRAE Handbook Fundamentals (2009 edition)
 - Chapter 14 Climatic Design Information
 - Chapter 15 Fenestration
 - Chapter 17 Residential Cooling and Heating Load Calculations
 - Chapter 18 Nonresidential Cooling and Heating Load Calculations

References

- Remarks:
 - "Load & Energy Calculations" in ASHRAE Handbook Fundamentals
 - The following previous cooling load calculations are described in earlier editions of the ASHRAE Handbook (1997 and 2001 versions)
 - CLTD/SCL/CLF method
 - TETD/TA method
 - TFM method

		HONG KONG OBSERVATO, China											WMO#:	450050	
Lat	22.30N	Long:	114.17E	Elev:	62	StdP:	100.58		Time Zone:	8.00 (CH	N)	Period:	82-92	WBAN:	99999
Annual H	eating and I	Humidificat	tion Design (Conditions											
Coldect	Heati	og DB		Humi	dification DF	/MCDB an	d HR			Coldest mon	th WS/MCI	DB	MCWS	/PCWD	ľ
Month	99.6%	99%	DP	99.6% HR	MCDB	DP	99% HR	MCDB	0 WS	4% MCDB	WS	1% MCDB	to 99. MCWS	6% DB PCWD	
2	9.6	10.9	-1.1	3.5	13.0	1.8	4.3	14.0	9.2	15.9	8.4	15.8	2.2	10	L
Annual C	ooling, Deh	umidificati	on, and Enth	nalpy Desig	n Conditio	ns									
Hottoot	Hottest			Cooling D	B/MCWB					Evaporation	n WB/MCD	В		MCWS	/PCWD
Month	Month	0	.4%	1	%	2	%	0.4	4%	1	%	2	%	to 0.4	% DB
7	DB Range	22.2	26.5	21.7		21.2		27.4	20.5	27.1	20.1	26.0	30.0	34	270
,	3.5	32.2	20.J	JI./	20.4	31.2	20.3	27.4	30.5	27.1	SU.I	20.9	29.9	3.4	
	0.4%		Denumiunica	1%			2%		0	4%	Entral	1%	2	!%	8 to 4 &
DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6
26.6	22.3	29.3	26.2	21.8	29.1	26.1	21.6	29.0	87.5	30.6	86.4	30.3	85.3	30.1	970
Extreme /	Annual Desi	ign Conditi	ons												
E.t		1140	Extreme		Extreme A	Annual DB				n-Year Re	turn Perioc	Values of E	Extreme DB		
10/	reme Annua	F0/	Max	Min	ean Max	Standard	deviation	n=5	years	n=10 Min	years	n=20	years	n=50	years
86	2.5% 7 4	5% 6.5	28 4	76	33.5	17	0.3	6.3	33 7	5.3	33 9	4 4	34 1	31	34 4
Monthly 0	Climatic Des	sian Condi	tions		0010		010	010		010	0010		•	011	0
		J	Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sen	Oct	Nov	Dec
		Tavg	23.1	16.2	16.1	18.5	21.9	25.8	27.9	29.0	28.8	27.8	25.5	21.7	17.6
		Sd		2.37	2.57	3.33	2.70	2.01	1.70	1.29	1.27	1.50	1.85	2.49	2.85
Tempe	eratures,	HDD10.0	2	1	0	1	0	0	0	0	0	0	0	0	1
Degre	ee-Days and	HDD18.3	237 4782	192	171	39 264	357	489	538	588	581	534	481	350	236
Degre	e-Hours	CDD18.3	1976	6	8	46	111	231	288	330	323	284	223	104	23
		CDH23.3	18618	0	1	79	436	1826	3226	4110	3924	3126	1657	228	5
		CDH26.7	5853	0	0	0	31	366	1081	1696	1521	957	200	3	0
		0.4%	DB	22.1	23.1	26.0	28.6	31.2	32.2	33.0	32.9	32.5	30.6	26.9	24.0
Monthl	ly Design		MCWB	18.5	19.8 21.9	22.7	24.3	26.2	26.5	26.8	26.6	25.6	25.2	21.9	19.3
Dry	and	2%	MCWB	17.5	19.3	22.6	24.2	26.0	26.6	26.7	26.6	25.8	24.6	20.0	18.1
Mean C	oincident	5%	DB	20.0	20.7	24.3	26.7	29.4	30.9	31.6	31.5	30.8	28.5	25.2	21.7
Wet Tempe	t Bulb eratures	070	MCWB	16.9	18.4	22.2	23.8	25.7	26.5	26.6	26.5	25.7	24.2	21.4	17.6
·		10%	DB MCWB	19.1 16.2	19.6 17.4	23.3 21.4	26.0 23.6	28.6 25.4	30.3 26.4	31.1 26.4	31.0 26.4	30.1 25.5	27.7	24.7 21.1	21.0 17.2
		a	WB	19.5	21.1	23.6	25.3	26.9	27.7	27.7	27.7	27.3	26.2	23.9	20.1
Monthi	lv Desian	0.4%	MCDB	21.0	22.4	25.2	27.1	29.8	30.6	30.9	31.1	30.3	28.9	25.6	22.6
Wet	t Bulb	2%	WB	18.5	19.9	23.1	24.6	26.5	27.2	27.3	27.2	26.9	25.6	23.0	19.4
a Mean C	and coincident		MCDB	20.2	21.5	24.7	26.6	29.3	30.0	30.4	30.3	29.6	28.1	25.0	21.8
Dry	Bulb	5%	MCDB	19.4	20.5	24.1	26.3	28.8	29.8	30.3	30.0	29.3	27.6	24.6	21.0
Tempe	eratures	10%	WB	16.8	18.0	21.5	23.8	25.7	26.7	26.9	26.7	26.2	24.6	21.8	17.8
		1070	MCDB	18.7	19.2	23.1	25.9	28.2	29.4	30.0	29.6	29.0	27.2	24.2	20.4
			MDBR	3.5	3.1	3.4	3.3	3.3	3.0	3.5	3.5	3.4	3.2	3.5	3.8
Mean	n Daily	5% DB	MCDBR	4.1	4.6	4.3	4.2	4.0	3.6	4.1	4.3	4.2	3.7	3.6	4.1
Ra	ange		MCDBR	3.5	4.2	4.0	4.0	3.6	3.3	3.6	3.9	3.7	3.2	3.1	3.6
		5% WB	MCWBR	2.7	3.2	3.0	2.4	1.9	1.4	1.5	1.6	1.6	1.5	2.2	2.6
Clea	ar Sky	ta	aub	0.631	0.658	0.766	0.775	0.701	0.659	0.617	0.682	0.741	0.725	0.621	0.604
S	olar	ta	aud	1.519	1.499	1.395	1.410	1.530	1.612	1.693	1.568	1.467	1.469	1.591	1.581
Irrac	diance	Edh	1,1100N 1,1100N	256	000 279	324	327	00∠ 289	005 264	244	276	297	599 281	236	030 233
					-				-		-	-	-		

CDDn Cooling degree-days base n°C, °C-day CDHn Cooling degree-hours base n°C, °C-hour DB Dry bulb temperature, °C DP Dew point temperature, °C Ebn,noon } Clear sky beam normal and diffuse hori-Edh,noon } zontal irradiances at solar noon, W/m2 Elev Elevation, m Enth Enthalpy, kJ/kg HDD*n* Heating degree-days base n°C, °C-day Hours 8/4 & 12.8/20.6 Number of hours between 8 a.m. PCWD

and 4 p.m with DB between 12.8 and 20.6 °C HR Humidity ratio, g of moisture per kg of dry air

Longitude, ° Mean coincident dry bulb temperature, °C MCDBR Mean coincident dry bulb temp. range, °C Mean coincident dew point temperature, °C Mean coincident wet bulb temperature, °C MCWBR Mean coincident wet bulb temp. range, °C Mean coincident wind speed, m/s Mean dry bulb temp. range, °C Prevailing coincident wind direction, °, 0 =North, 90 =East

Latitude, °

Lat

Long

MCDB

MCDP

MCWB

MCWS

MDBR

Years used to calculate the design conditions Standard deviation of daily average temperature, °C Standard pressure at station elevation, kPa Clear sky optical depth for beam irradiance Clear sky optical depth for diffuse irradiance

Average temperature, °C

Time Zone Hours ahead or behind UTC, and time zone code WB Wet bulb temperature, °C

WBAN Weather Bureau Army Navy number

World Meteorological Organization number WMO#

Wind speed, m/s

ws

Period

Sd

StdP

taub

taud

Tavg

		HONG KONG INTERNATI, China											WMO#:	450070	
Lat:	22.32N	Long:	113.92E	Elev	: 8	StdP:	101.23		Time Zone:	8.00 (CH	N)	Period:	82-06	WBAN:	99999
Annual He	eating and I	Humidifica	tion Design (Conditions	5										
Coldest	Heati	ng DB		Hum	idification DF	P/MCDB an	d HR		0	Coldest mon	th WS/MCI	DВ	MCWS	/PCWD	Ī
Month	99.6%	99%	DP	99.6% HR	MCDB	DP	99% HR	MCDB	0 WS	4% MCDB	WS	I% MCDB	to 99. MCWS	6% DB PCWD	
1	9.0	10.8	-3.2	2.9	13.7	-0.1	3.8	14.9	10.5	18.1	9.5	17.6	4.2	30	I
Annual Co	ooling, Deh	umidificati	on, and Enth	alpy Desi	gn Conditio	ns									
Hottoot	Hottest			Cooling E	DB/MCWB					Evaporation	n WB/MCD	В		MCWS,	/PCWD
Month	Month DB Range	0	.4%		1% MCWB	DB 2	% MCWB	0 WB	4%	1 W/B	% MCDB	2 W/B	MCDB	to 0.4	% DB
7	4 7	33.8	26.5	33.0	26.3	32.2	26 1	27.7	30.8	27.3	30.5	27.0	30.3	50	240
		00.0	Dehumidifica	ation DP/M	CDB and HF	<u>, , , , , , , , , , , , , , , , , , , </u>	20.1	27.17	00.0	21.0	Enthal	ov/MCDB	00.0	0.0	Hours
	0.4%			1%			2%		0	4%	_	1%	2	.%	8 to 4 &
DP	HR	MCDB	DP		MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6
26.9		30.0	26.2	21.7	29.5	26.1	21.5	29.5	88.3	31.3	86.7	31.0	85.4	30.7	730
Extreme A	Annual Desi	ign Conditi	ons												
Extr	reme Annua	IWS	Extreme		Extreme /	Annual DB				n-Year Re	turn Perioc	Values of E	Extreme DB		
1%	2.5%	5%	WB	Min	Max	Min	Max	n=5 Min	years Max	n=10 Min	years Max	Min	years Max	n=50 Min	years Max
10.2	8.9	8.0	29.6	7.2	35.7	1.5	1.1	6.1	36.4	5.3	37.1	4.5	37.7	3.4	38.5
Monthly C	Climatic Des	sign Condit	tions												
			Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		Tavg	24.0	16.9	17.2	19.6	23.4	26.7	28.7	29.5	29.4	28.6	26.4	22.7	18.5
		Sd		3.05	3.12	3.29	2.96	2.08	1.66	1.40	1.45	1.60	1.85	2.63	3.09
Tempe	eratures,	HDD10.0	2	1	1	0 26	0	0	0	0	0	0	0	0	1 36
a	ind	CDD10.0	5114	216	202	298	403	518	562	605	600	557	509	382	263
Degree	e-Hours	CDD18.3	2253	19	22	65	155	260	312	347	342	307	251	134	40
		CDH23.3	22772	14	26	178	928	2464	3762	4495	4373	3648	2244	579	59
		CDH26.7	8410	0	0	8	173	704	1516	2066	1953	1407	522	59	2
		0.4%	DB	25.0	25.4	27.8	31.0	32.2	33.9	34.9	34.9	34.2	32.0	29.8	26.3
Monthl	y Design		MCWB	19.4	20.6	23.0	24.5	25.6	26.7	26.9	26.5	26.0	24.1	22.6	20.7
Dry	Bulb	2%	DB	23.1	24.1	26.2	29.2	31.5	32.8	33.2	33.6	33.0	30.9	28.1	25.0
Mean Co	oincident		DB	22.0	22.9	25.1	24.3	30.8	32.0	32.8	32.9	32.1	30.0	27.1	23.8
_ Wet	Bulb	5%	MCWB	17.6	18.8	21.9	24.1	25.6	26.3	26.6	26.4	25.4	23.7	21.2	18.9
Tempe	eratures	10%	DB	21.0	21.2	24.1	27.8	29.9	31.1	32.0	32.0	31.1	29.1	26.1	22.8
		 	MCWB	17.0	17.8	21.2	23.7	25.3	26.5	26.5	26.3	25.4	23.1	20.8	17.8
		0.4%	WB	20.5	22.0	24.1	25.9	27.1	28.0	28.2	28.1	27.7	26.3	24.2	22.9
Monthl	y Design		MCDB WB	23.0	23.9	20.1	28.7	26.6	27.5	27.6	27.6	27.0	29.0	23.5	20.0
a	and	2%	MCDB	22.0	22.9	25.5	28.1	29.6	30.3	31.0	30.8	30.3	28.8	26.6	23.7
Mean Co	oincident	5%	WB	18.5	19.5	22.6	24.7	26.3	27.1	27.2	27.2	26.6	25.1	22.8	19.6
Dry Tempe	' Bulb eratures	570	MCDB	21.1	21.9	24.7	27.6	29.2	30.1	30.6	30.5	29.9	28.5	26.0	22.7
		10%	WB	17.6	18.6 20.0	21.6	24.2	25.9	26.7	26.9	26.8	26.3	24.6	22.0	18.6
			WICDB	20.3	20.3	23.7	20.5	20.0	23.0	30.4	30.2	23.0	20.1	23.3	21.0
	Deile			5.2	4.6	4.7	4.6	4.5	4.2	4.7	4.7	4.7	4.8	5.3	5.5
Mear Temp	erature	5% DB	MCWBR	3.4	3.5	3.5	2.4	2.1	4.9 2.0	2.1	2.4	2.5	2.6	3.0	3.1
Ra	ange	E0/ W/D	MCDBR	5.8	5.8	5.4	5.1	4.6	4.3	4.7	4.9	4.9	4.6	4.8	5.2
		5% VVD	MCWBR	3.7	3.8	3.5	2.7	2.3	2.0	2.1	2.3	2.3	2.3	2.9	3.3
01	er Clar	ta	aub	0.690	0.710	0.813	0.846	0.804	0.751	0.694	0.768	0.832	0.815	0.696	0.684
Sciea	аг Эку olar	ta	aud	1.432	1.424	1.342	1.332	1.390	1.462	1.547	1.437	1.357	1.362	1.473	1.455
Irrad	diance	Ebr	n,noon	590	618	581	574	597	624	662	614	561	540	581	573
		Edr	i,noon	2/0	299	341	ა ეკ	ა32	307	202	314	331	310	202	200

CDDn Cooling degree-days base n°C, °C-day CDHn Cooling degree-hours base n°C, °C-hour DB Dry bulb temperature, °C DP Dew point temperature, °C Ebn,noon } Clear sky beam normal and diffuse hori-Edh,noon } zontal irradiances at solar noon, W/m2 Elev Elevation, m Enth Enthalpy, kJ/kg HDD*n* Heating degree-days base n°C, °C-day Hours 8/4 & 12.8/20.6 Number of hours between 8 a.m.

PCWD and 4 p.m with DB between 12.8 and 20.6 °C HR

Humidity ratio, g of moisture per kg of dry air

```
Longitude, °
MCDB
          Mean coincident dry bulb temperature, °C
MCDBR
          Mean coincident dry bulb temp. range, °C
          Mean coincident dew point temperature, °C
MCDP
MCWB
          Mean coincident wet bulb temperature, °C
MCWBR
          Mean coincident wet bulb temp. range, °C
MCWS
          Mean coincident wind speed, m/s
MDBR
          Mean dry bulb temp. range, °C
          Prevailing coincident wind direction, °,
          0 = North, 90 = East
```

Latitude, °

Lat

Long

Period Years used to calculate the design conditions Standard deviation of daily average temperature, °C Standard pressure at station elevation, kPa Clear sky optical depth for beam irradiance Clear sky optical depth for diffuse irradiance Average temperature, °C Time Zone Hours ahead or behind UTC, and time zone code Wet bulb temperature, °C

WBAN Weather Bureau Army Navy number

World Meteorological Organization number WMO#

Wind speed, m/s

Sd

StdP

taub

taud

Tavg

WB

ws