MEBS7014 Advanced HVAC applications

http://ibse.hk/MEBS7014/

Fluid Network Analysis II

Ir Dr. Sam C. M. Hui Department of Mechanical Engineering The University of Hong Kong E-mail: cmhui@hku.hk

Jan 2021

Contents

• Pipe Systems and Design

• HVAC Water Systems

Practical Design Issues

• Pipe Network Analysis

Pipe Systems and Design

- Common types of HVAC piping systems
 - Chilled water (CHW) system
 - Condenser water (CW) system
 - Sea water system
 - Hot water supply system
 - Steam pipes, gas pipes
- Similar systems in other building services
 - Water supply & distribution (plumbing)

Typical HVAC piping systems

[Source: Kreider, K. F. (ed.), 2001. Handbook of Heating, Ventilation, and Air Conditioning, CRC Press, Boca Raton, FL.]

Pipe Systems and Design

- Common piping materials & joints
 - <u>Steel</u>: Black or galvanized
 - More commonly used for larger piping sizes
 - May be joined by welding or thread/flanged fittings
 - <u>Copper</u>:
 - Typically for pipe sizes 75 mm and smaller
 - Joined with soldering, brazing or pressure seals
 - <u>Plastic</u>: PVC (polyvinyl chloride), CPVC (chlorinated PVC), or PE (polyethylene)
 - Widely used within waste & vent piping systems
 - Joined with socket-type fittings or solvent cements

(See also: <u>https://www.csemag.com/articles/specifying-pipe-and-piping-materials/</u>)

Common pipe jointing methods

Pipe Systems and Design

- Piping system consists of: (a) pipe sections, (b) pipe circuits, and (c) equipment components
- A piping system must be analyzed for:
 - Pressures
 - Temperatures
 - Critical circuits (for pressures & temperatures)
- Equipment in the piping system network must be analyzed and designed for:
 - Entering & leaving pressures, pressure loss, entering & leaving temperatures, temp. change

(Image source: https://jmpcoblog.com/hvac-blog/understanding-primary-secondary-pumping-part-6-5-ways-to-pump-an-hvac-system)

Pipe Systems and Design

• Two major concerns:

- Size the pipe (e.g. from charts & tables)
- Determine the flow-pressure relationship
 - To analyse the system, e.g. to find out pump pressure
 - By using manual or computer-based methods
- Calculations for pipelines or pipe networks
 - Can be very complicated for branches & loops
 - Basic parameters: pipe diameter, length, friction factor, roughness, velocity, pressure drop

Friction loss for water in commercial steel pipe (Schedule 40)

(Source: ASHRAE Handbook Fundamentals 2017, Chp. 22)

(Source: ASHRAE Handbook Fundamentals 2017, Chp. 22)

(Source: ASHRAE Handbook Fundamentals 2017, Chp. 22)

Pipe Systems and Design

- Valve and fitting losses
 - May be greater than pipe friction alone

$$\Delta p = K_L \rho \left(\frac{V^2}{2} \right)$$
 or $\Delta h = K_L \left(\frac{V^2}{2g} \right)$

- $K_L = \text{loss coefficient} (K \text{ factor}) \text{ of pipe fittings}$
 - Geometry and size dependent
 - May be expressed as equivalent lengths of straight pipe
- Valve coefficient (A_v) :
 - Volume flow rate $Q = A_v \sqrt{\Delta p / \rho}$

Table 2.5 Loss Coefficients for Fittings

Fitting	K _L	
Globe valve, fully open Angle valve, fully open Butterfly valve, fully open Gate valve, fully open 3/4 open 1/2 open 1/4 open Check valve, swing type, fully open Check valve, lift type, fully open Check valve, ball type, fully open	$ \begin{array}{r} 10.0 \\ 5.0 \\ 0.4 \\ 0.2 \\ 1.0 \\ 5.6 \\ 17.0 \\ 2.3 \\ 12.0 \\ 70.0 \\ \end{array} $	With the second seco
Foot valve, fully open Elbow, 45° Long radius elbow, 90° Medium radius elbow, 90° Short radius (standard) elbow, 90° Close return bend, 180° Pipe entrance, rounded, r/D < 0.16 Pipe entrance, square-edged Pipe entrance, re-entrant	$ \begin{array}{c} 15.0 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.9 \\ 2.2 \\ 0.1 \\ 0.5 \\ 0.8 \\ \end{array} $	$ \begin{array}{c} \hline \\ \hline $

(Source: Larock, Jeppson and Watters, 2000: *Hydraulics of Pipeline Systems*)

Pipe Systems and Design

- Practical design issues
 - Select a pipe size for desired total flow rate and available or allowable pressure drop, e.g.
 - Often assume 2.5 m / 100 m pipe length
 - Velocity limit 1.2 m/s for pipe < 50 mm dia., pressure drop limit 400 Pa/m for pipe > 50 mm dia.
 - Rule of thumb for practical design:
 - Assume design pipe length is 1.5 to 2.0 times actual to account for fitting losses; after pipe diameter is selected, then evaluate the influence of each fitting
 - Other considerations: e.g. noise & water hammer

HVAC Water Systems

- HVAC water systems can be classified by
 - Operating temperature
 - Flow generation
 - Pressurization
 - Piping arrangement
 - Pumping arrangement

HVAC Water Systems

- Open water systems, e.g. using cooling tower
- Closed water systems
 - Chilled water (CHW) system [4-13 °C, 825 kPa]
 - Condenser water (CW) system
 - Dual temperature water system
 - Low temp. water (LTW) system [Max. 120 °C, < 1100 kPa]
 - Medium temp. water (MTW) system [120-125 °C, < 1100 kPa]
 - High temp. water (HTW) system [> 175 °C, > 2070 kPa]
- Once-through system, e.g. sea water system

2-pipe direct and reverse return systems

HVAC Water Systems

- Typical piping details at equipmentChillers
 - Valves, thermometers, pressure gauges
 - Fan coil or AHU (air handling unit) coil
 - Balancing, control, shutoff & drain valves
 - Pumps
 - Balancing, shutoff, check & drain valves
 - Strainers, flexible connectors

HVAC Water Systems

- System piping arrangements
 - Parallel and series chiller evaporators
 - Single water-cooled chiller loop
 - Multiple water-cooled chiller loop
 - With dedicated pumps
 - With manifold pumps
 - Primary-secondary chilled water system
 - Primary-only, variable-flow chilled water system

Multiple chiller variable flow chilled water system (primary-secondary)

Primary-only variable-flow system

Practical Design Issues

- Heat transfer in water systems
 - Terminal units/devices that convey heat from/to water for heating/cooling
 - Common heat exchangers
 - Water-to-air finned coil
 - Water-to-water
 - Heating load devices, e.g. radiators
 - Cooling load devices, e.g. fan coil units (FCU)

Calculate Heat Transferred to or from Water:

$$q_w = 1000 \dot{m} c_p \Delta t$$

where

$$q_w$$
 = heat transfer rate to or from water, W

 \dot{m} = mass flow rate of water, kg/s

 c_p = specific heat of water, kJ/(kg·K)

 Δt = water temperature increase or decrease across unit, K 1000 = constant to change kJ in c_p to J

$$q_w = \rho_w c_p Q_w \Delta t$$

where

$$Q_w$$
 = water flow rate, L/s
 ρ_w = density of water, kg/m³

Practical Design Issues

- Design issues
 - Design water temperature
 - Flow rate
 - Piping layout
 - Pump selection
 - Terminal unit selection
 - Control method

Practical Design Issues

- Design principles
 - Constant flow? Variable flow? Intermittent flow?
 - Direct return piping or reverse return piping
 - Direct return riser & reverse zone piping
- Design factors
 - Pump speed controls
 - Pressure distribution
 - System balancing
 - Thermal expansion & joints (or loops)

• Piping materials

- Chilled water: black & galvanized steel
- Hot water: black steel, hard copper
- Condenser water: black steel, galvanized ductile iron, PVC
- Flow rate measurements
 - Venturi, nozzle & orifice flowmeters
 - Variable area flowmeters (rotameters)
 - Turbine flowmeters

Flow measurements methods

- Other design considerations
 - Makeup water (from city water or wells)
 - Safety relief valves (for pressurised systems)
 - Air elimination (e.g. by air separator/vent)
 - Drain (at low points) & shutoff (for isolation)
 - Balance fittings (allow balancing of sub-circuits)
 - Strainers (remove dirt)
 - Insulation (reduce heat loss & condensation)
 - Condensate drains (to drainage system or recover)

System design process

- "A Guide to HVAC Building Services Calculations"
 water flow distribution systems
 - W1 Pipe sizing general
 - W2 Pipe sizing straight length
 - W3 Pipe sizing pressure drop across fittings
 - W4 System resistance for pipework index run
 - W5 Pump sizing
 - W6 Water system pressurisation

(Ref: Pennycook, K., Churcher, D. and Bleicher, D., 2007. *A Guide to HVAC Building Services Calculations*, 2nd ed., Building Services Research and Information Association, Bracknell, Berkshire, England.)

- Basic equations
 - Darcy-Weisbach Equation (for fully developed flows of all Newtonian fluids)

$$\Delta p = f\left(\frac{L}{D}\right)\left(\frac{\rho V^2}{2g}\right) \quad \text{or} \quad \Delta h = f\left(\frac{L}{D}\right)\left(\frac{V^2}{2g}\right)$$

• <u>Colebrook-White Equation</u> (for transition region):

$$\frac{1}{\sqrt{f}} = 1.14 + 2\log(D/\varepsilon) - 2\log\left[1 + \frac{9.3}{\operatorname{Re}(\varepsilon/D)\sqrt{f}}\right]$$

* The equation is implicit in *f* (appears on both sides), so iterations are required to solve for *f*.

- Basic equations (cont'd)
 - <u>Hazen-Williams Equation</u> (alternative to Darcy-Weisbach formula; empirical) $\Delta p = 6.819L \left(\frac{V}{C}\right)^{1.852} \left(\frac{1}{D}\right)^{1.167} (\rho g)$
 - C = roughness factor (typically, C = 150 for plastic or copper pipe, C = 140 for new steel pipe, C < 100 for badly corroded or very rough pipe)

(See also: Darcy-Weisbach equation - Wikipedia <u>http://en.wikipedia.org/wiki/Darcy%E2%80%93Weisbach_equation</u> Hazen-Williams equation - Wikipedia <u>http://en.wikipedia.org/wiki/Hazen%E2%80%93Williams_equation</u>)

- Basic equations (cont'd)
 - Exponential formula:
 - The previous equations (Darcy-Weisbach or Hazen-Williams) can be expressed by an exponential form to generalise the theory

 $\Delta h = KQ^n$

- Q = volume flow rate; K, n = coefficient & exponential
- Values for the coefficient and *n* change, depending on which equation is used

- Pipe network analysis
 - Physical features are known
 - Solution process try to determine flow & pressure at every node
- Pipe network design
 - Variables are unknown
 - Try to solve & select pipe diameters, pumps, valves, etc.

- Often a complex mathematical problem
 - Solving entire set of non-linear equations
 - Large networks are usually analysed by computers
- Basis of the computer solutions
 - Basic principles of fluid mechanics
 - Suitable equations that embody them
 - Interrelate the pipe discharge & pressure at each node of the network

- Basic principles of fluid mechanics
 - 1) Conservation of mass (continuity principle)
 - 2) Work-energy principle (Darcy-Weisbach or Hazen-Williams)
 - 3) Fluid friction & energy dissipation
- The task is to
 - Describe the hydraulic system accurately and efficiently by means of equations
 - Solve these simultaneous equations effectively

- Methods to solve steady flow problem in a pipe network
 - <u>Hardy Cross method</u>
 - Adapted from structural engg.
 - Oldest systematic method; suited for hand computations
 - Convergence problems for large systems
 - <u>Newton method</u>
 - Linear algebra matrix operations
 - Perform iterative set of calculations (using computers)

(See also: Hardy Cross method - Wikipedia http://en.wikipedia.org/wiki/Hardy_Cross_method)

- Define an appropriate pipe system
 - Decide what features are important & to retain
 - No hard rules; requires much insight & judgment
 - Determine which demands should be specified
 - Analysis for a range of system demands
 - For large systems, require some "skeletonization"
 - Not all pipes or nodes are included in the analysis
 - Some may be lumped at a single node
 - After studying the entire system, more detailed analysis may be done within a building or area

- Basic relations between network elements
 - Junction Continuity Equations
 - Summing volume flows at each junction (or node)
 - Energy Loop Equations
 - Summing initial energy within a network loop with the friction losses within that loop
 - Basic parameters:
 - *NP* = number of pipes
 - NJ = number of junctions
 - *NL* = number of loops
 - Branched system and looped system

Branched system and looped system

(Source: Larock, Jeppson and Watters, 2000: *Hydraulics of Pipeline Systems*)

- Equations for steady flow in networks
 - *Q-equations* (pipe charges are the unknowns)
 - *H-equations* (heads are the unknowns)
 - **<u>AQ</u>**-equations (corrective discharges are the unknowns)
 - When the equations are established, may use Newton method to solve them
 - Linear algebra matrix operations
 - Determine Jacobian matrix
 - Iterative procedure to calculate desired discharges

- <u>*Q*-equations</u> (assume flow as unknowns)
 - Based on continuity
 - Flow into a junction = Flow out of the junction

$$QJ_{j} - \sum Q_{i} = 0$$

$$QJ_{j} = \text{flow out (demand)}$$

$$QJ_{i} = \text{flow in from pipe } i$$

- Based on work-energy principles
 - Sum of the head loss around each loop is zero

$$\sum_{i} h_{fi} = \sum_{i} K_{i} Q_{i}^{n} = 0 \qquad \begin{array}{c} h_{fi} = \text{head loss} \\ K_{i}, n = \text{coefficients} \end{array}$$

• <u>*H*-equations</u> (assume head as unknowns) • Solve the exponential equation for the flow $Q_{ii} = (h_{fii} / K_{ii})^{1/n_{ij}} = [(H_i - H_i) / K_{ii})]^{1/n_{ij}}$

• Subscript ij = for the pipe from node i to node j

• Substitute the above into junction continuity equ. $QJ_{j} - \sum \{ [(H_{i} - H_{j})/K_{ij})]^{1/n_{ij}} \}_{in}$ $+ \sum \{ [(H_{i} - H_{j})/K_{ij})]^{1/n_{ij}} \}_{out} = 0$ Example of *H*-equations for a simple network

H-equations (by substituting the *Q* above):

$$\begin{bmatrix} \frac{H_1 - H_2}{K_{12}} \end{bmatrix}^{1/n_{12}} + \begin{bmatrix} \frac{H_1 - H_3}{K_{13}} \end{bmatrix}^{1/n_{13}} = QJ_2 + QJ_3$$
$$- \begin{bmatrix} \frac{H_1 - H_2}{K_{12}} \end{bmatrix}^{1/n_{12}} + \begin{bmatrix} \frac{H_2 - H_3}{K_{23}} \end{bmatrix}^{1/n_{23}} = -QJ_2$$

- ΔQ -equations (corrective flows as unknowns)
 - To obtain these equations, replace the flow in energy loop equations by an initial Q_{0i} , plus the sum of all initially unknown corrective flow $Q_i = Q_{0i} + \sum \Delta Q_k$
 - Energy equation becomes

$$\sum K_i \{Q_{0i} + \sum \Delta Q_k\}^{n_i} = 0$$

• Nos. of equations can be reduced, but the equations are nonlinear & contain many terms

3 **F** 1

- Solving the network equations
 - Newton iterative formula: ${x}^{(m+1)} = {x}^{(m)} - [D]^{-1} {F}^{(m)}$
 - {*x*} = entire column vector of unknowns
 - $\{F\}$ = entire column vector of equations
 - $[D]^{-1}$ = inverse of matrix [D], the Jacobian

$$\{x\} = \begin{cases} x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_n \end{cases} \qquad \{F\} = \begin{cases} F_1 \\ F_2 \\ \cdot \\ \cdot \\ F_n \end{cases} \qquad \begin{bmatrix}D] = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \frac{\partial F_n}{\partial x_1} & \frac{\partial F_n}{\partial x_2} & \cdots & \frac{\partial F_n}{\partial x_n} \end{bmatrix}$$

- Solving the network equations (cont'd)
 - Newton method solves a system of nonlinear equations by iteratively solving a system of linear equations. The iterative formula is:

$$\{x\}^{(m+1)} = \{x\}^{(m)} - \{z\}$$

- $\{z\}$ = solution vector, solved by $[D]\{z\} = \{F\}$
- The solution is developed by using a multidimensional Taylor series expansion to evaluate the individual equation

An example of simple pipe network analysis (using MathCAD)

- Computer solutions to networks
 - Implement using equation solver package e.g. MathCAD, or computer programs e.g. FORTRAN
 - Spreadsheet for Pipe Network Analysis <u>https://cheguide.com/pipe_network.html</u>
 - Other pipe analysis software are available, e.g. EPANet (for water supply & distribution)
 - <u>https://www.epa.gov/water-research/epanet</u>

Spreadsheet for Pipe Network Analysis

Spreadsheet for Pipe Network Analysis

1	Α	В	С	D	E	F	G	Н	1	J	K	L
93 Iteration												
94	5	Pipe	Flow	Length	Diameter	e/D	Velocity	Reynold's	Friction			
95			m3/s	m	m		m/s	Number	Factor, f	K	hL	nHL/Q
96		1	0.205	300	0.30	0.00087	2.90	869910	0.019	199	8.34	81.42
97		2	0.095	250	0.25	0.00104	1.94	483995	0.021	435	3.93	82.61
98		5	0.080	350	0.20	0.00130	2.54	507484	0.022	1949	12.38	310.66
99		3	0.125	125	0.20	0.00130	3.99	797381	0.021	<mark>689</mark>	10.82	172.72
100		6	0.033	350	0.20	0.00130	1.05	210734	0.022	2010	2.20	133.09
101		7	0.030	125	0.20	0.00130	0.95	189174	0.022	722	0.64	42.90
102		4	0.095	300	0.20	0.00130	3.02	604994	0.021	1663	15.02	316.17
103		8	0.008	125	0.15	0.00173	0.44	66630	0.025	3455	0.21	54.24
104		9	0.087	350	0.20	0.00130	2.78	555021	0.022	1944	14.78	339.04
105		10	0.063	125	0.15	0.00173	3.55	533211	0.023	3133	12.36	393.64
106												
107		Coefficient Matrix					Inverse				F	DQ
108			707.16	-172.72	-54.24		1.53E-03	4.32E-04	1.53E-04		0.00	0.00000
109			-172.72	659.37	-133.09		4.32E-04	1.68E-03	2.69E-04		0.00	0.00000
110			-54.24	-133.09	920.01		1.53E-04	2.69E-04	1.13E-03		0.00	0.00000

(Source: <u>https://cheguide.com/pipe_network.html</u>)

EPANET software for modelling water distribution systems

(Source: https://www.epa.gov/water-research/epanet)

- After the analysis is done, the next step is to verify by measurements in actual system (network verification) & identify deficiencies
 - Such as for designing water supply systems
- Application to HVAC systems
 - At present, large network analysis is not common in HVAC, except district cooling system (DCS)
 - But the technique can be applied to studies of water systems, air systems and building infiltration

Pipe network of a district cooling system (DCS)

(Source: DOI: 10.1016/j.renene.2018.07.052)

• Videos for illustration:

- CE234--Lecture9--Pipe Networks (23:50) https://youtu.be/UEiOw1tWmJw
- Hardy Cross Method (7:32) https://youtu.be/pxCWxGHKo2M
- Hardy Cross Method for Pipe Networks CE 331 Class 12 (10 Feb 2020) (35:30) <u>https://youtu.be/1G8ckwcL3jg</u>
- Pipe network analysis in Excel using Hardy cross method (English) (19:21) <u>https://youtu.be/M8f1FNgeq7o</u>

Further Reading

- ASHRAE, 2017. *ASHRAE Handbook Fundamentals* 2017, Chp. 22 - Pipe Design, American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., Atlanta, GA.
- Example: Analysis of Complex Pipe Networks with Multiple Loops and Inlets and Outlets <u>http://ibse.hk/MEBS7014/Abbreviated_Hardy-</u> <u>Cross.pdf</u>
- Spreadsheet for Pipe Network Analysis https://cheguide.com/pipe_network.html

References

- Carrier Corporation, 2005. *Distribution Systems: Water Piping and Pumps*, Technical Development Program, Carrier Corporation, Syracuse, NY. <u>http://siglercommercial.com/wp-content/uploads/2017/10/02-Chilled-Water-Piping-Pumps.pdf</u>
- Hegberg, R. A., 1999. *Fundamentals of Water System Design*, Chp. 1 & 2, American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., Atlanta, GA. [697 H46]
- Larock, B. E., Jeppson, R. W. and Watters, G. Z., 2000. *Hydraulics* of *Pipeline Systems*, Chp. 4, CRC Press, Boca Raton, FL. [621.8672 L328 h]
- Pennycook, K., Churcher, D. and Bleicher, D., 2007. A Guide to HVAC Building Services Calculations, 2nd ed., Building Services Research and Information Association, Bracknell, Berkshire, England, pp. 81-95.