MEBS7014 Advanced HVAC applications http://ibse.hk/MEBS7014/

Thermal Storage Systems I

Ir Dr. Sam C. M. Hui Department of Mechanical Engineering The University of Hong Kong E-mail: cmhui@hku.hk

Feb 2023

Contents

- Basic concepts
- HVAC thermal storage
- Sensible thermal storage
- Latent thermal storage
- Thermochemical storage

Basic concepts

- Energy storage
 - Capture of energy produced at one time for use at a later time to reduce imbalances between energy demand & energy production
- Energy storage methods:
 - Chemical (e.g. hydrated salts)
 - Electrical (e.g. capacitor)
 - Electrochemical (e.g. battery)

- Mechanical (e.g. compressed air, flywheel)
- Thermal energy storage (TES)

Classification of energy storage technologies

(Source: https://etn.news/energy-storage/classification-of-energy-storage-technologies-an-overview)

Maturity of energy storage technologies

Basic concepts

• Thermal energy storage (TES)

- Can store heat or cold to be used under varying conditions for a later use for either heating or cooling applications and power generation
- The main use of TES is to overcome the mismatch between energy generation and energy use
- Energy is supplied to a storage system to be used at a later time, involving three steps: 1. charge, 2. storage and 3. discharge (a complete storage cycle)
- Storage concepts: active or passive systems

Thermal energy storage (TES) complete storage cycle

(Source: Cabeza L. F. (ed.), 2015. Advances in Thermal Energy Storage Systems: Methods and Applications, Woodhead Publishing. <u>https://doi.org/10.1016/C2013-0-16453-7</u>)

Active storage: by forced convection heat transfer into the storage material; the storage material circulates through a heat exchanger, a solar receiver or a steam generator (a) Direct systems: the heat transfer fluid (HTF) serving also as storage medium (b) Indirect systems: a second medium is used for storing the heat <u>Passive storage</u>: generally dual-medium storage systems, where the HTF passes through the storage only for charging and discharging a solid material

(Source: Cabeza L. F. (ed.), 2015. Advances in Thermal Energy Storage Systems: Methods and Applications, Woodhead Publishing. <u>https://doi.org/10.1016/C2013-0-16453-7</u>)

Basic concepts

- Main requirements for TES design
 - High energy density in the storage material
 - Good heat transfer between the heat transfer fluid and the storage material
 - Mechanical/chemical stability of storage material
 - Compatibility between the storage material and the container material
 - Complete reversibility of a number of cycles
 - Low thermal losses during the storage period
 - Easy control

Basic concepts

- Important design criteria of TES:
 - Operation strategy, maximum load needed, nominal temperature and enthalpy drop, and the integration into the whole application system
- Benefits of TES in energy systems:
 - Economics: reducing capital and operational costs
 - Efficiency: achieving a more efficient energy use
 - Less pollution of the environment and less CO₂ emissions
 - Better system performance & reliability

Benefits of thermal energy storage (TES) in energy systems

(Source: Behzadi A., *et al.*, 2022. Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review, *Renewable & Sustainable Energy Reviews*, 166: 112625. <u>https://doi.org/10.1016/j.rser.2022.112625</u>)

Basic concepts

- Major sectors for thermal energy storage (TES)
 - Power (and renewable energy integration)
 - Industry (for heat use & industrial processes)
 - Cold chain (supply chain logistics of cold products)
 - District heating and cooling (storage capacity)
 - Buildings (for HVAC & energy management)
- Important driving factors nowadays
 - Decarbonisation
 - Energy efficiency & demand side management
 - Renewable energy & variable supply integration

(Source: https://www.intechopen.com/chapters/63027)

Different types of thermal energy storage systems

(Source: Sahoo U., 2021. Energy Storage, Scrivener Publishing, Beverly, MA. https://doi.org/10.1002/9781119555599)

Comparison of the storage density of different thermal storage methods

Type of storage technology	Material	Energy stored (MJ/m ³)	Energy stored (kJ/kg)	Comments
Sensible heat	Granite	50	17	$\Delta T = 20^{\circ} \mathrm{C}$
	Water	84	84	$\Delta T = 20^{\circ} \mathrm{C}$
Latent heat	Water	306	330	$T_{\text{melting}} = 0^{\circ} C$
	Paraffins	180	200	$T_{\text{melting}} = 5 - 130^{\circ} \text{C}$
	Salt hydrates	300	200	$T_{\text{melting}} = 5 - 130^{\circ} \text{C}$
	Salt	600–1,500	300–700	$T_{\text{melting}} = 300 - 800^{\circ} \text{C}$
Chemical reactions	H ₂ gas (oxidation)	11	120,000	300 K, 1 bar
	H ₂ gas (oxidation)	2,160	120,000	300 K, 200 bar
	H ₂ liquid (oxidation)	8,400	120,000	20 K, 1 bar
	Fossil gas	32	-	300 K, 1 bar
	Gasoline	33,000	43,200	_
Electrical storage	Zn/Mn oxide battery	-	180	-
	Pb battery	-	70–180	-

(Source: Cabeza L. F. (ed.), 2015. Advances in Thermal Energy Storage Systems: Methods and Applications, Woodhead Publishing. <u>https://doi.org/10.1016/C2013-0-16453-7</u>)

(Source: https://www.mdpi.com/2076-3417/11/4/1490)

Basic concept of thermo-chemical reactions for thermal storage system

(Source: Sarbu I. & Sebarchievici C., 2018. A comprehensive review of thermal energy storage, *Sustainability*, 10 (1) 191. https://doi.org/10.3390/su10010191) Storage capacities of phase change materials (PCM) and thermochemical materials (TCM) compared to water

Publishing. https://doi.org/10.1016/C2013-0-16453-7)

HVAC thermal storage

- History of thermal energy storage for cooling
 - Can be traced to ancient time where snow/ice was transported from distant mountains to cool drinks and for bathing water for the wealthy
 - Block ice was cut from frozen lakes and shipped in insulated rail cars for food preservation and health-care facilities
- Electric utility impacts
 - Demand-side management (DSM) was embraced to address peak electric demand; to reduce peak demand using thermal energy storage

Block ice farming and harvesting (for cooling thermal storage)

HVAC thermal storage

- Types of HVAC thermal storage systems
 - <u>High-temperature storage</u>: with solar energy or high-temperature heating
 - <u>Cool storage</u>: with air-conditioning, refrigeration, or cryogenic-temperature processes
 - Energy may be charged, stored, and discharged daily, weekly, annually, or in seasonal or rapid batch process cycles
 - Can provide balancing services and other critical needs of the electric grid, e.g. frequency control and renewable energy integration (e.g. solar, wind)

A hot water storage system with solar collectors and a boiler

Academic Press, London. https://doi.org/10.1016/C2019-0-00430-X)

(Source: Sahoo U. (ed.), 2021. Energy Storage, Scrivener Publishing, Beverly, MA. https://doi.org/10.1002/9781119555599)

HVAC thermal storage

- A properly designed and installed thermal storage system can:
 - Shift loads from peak to nonpeak times
 - Reduce operating or initial costs
 - Reduce size of electric service and cooling or heating equipment
 - Increase operating flexibility
 - Provide back-up capacity
 - Extend the capacity of an existing system
 - Support balancing & renewable energy integration

On-peak and off-peak periods

(Source: Trane)

Benefits of thermal storage in HVAC systems

- Energy cost savings (e.g. reduce peak demand charge)
- Ancillary services benefit (e.g. balancing & frequency control)
- Reduced equipment size (meet the average load only)
- Capital cost savings (from downsizing equipment)
- Energy savings (e.g. lower condensing temperature at off-peak)
- Improved HVAC operation (by decoupling the thermal load)
- Back-up capacity (from the storage reservoir)
- Extending existing systems' capacity
- Distributed energy resource for utilities (demand side management)
- Renewable energy integration
- Storage may be used for fire fighting at emergency or disaster
- Other benefits (e.g. integrated with cold-air distribution)

(Source: ASHRAE HVAC Systems and Equipment Handbook 2020, SI edition, Chp. 50 Thermal Storage)

Peak shaving and load shifting by thermal storage system

(Source: Trane)

(Source: Trane)

Conditions making thermal storage attractive in HVAC systems

- Loads are of short duration
- Loads occur infrequently
- Loads are cyclical
- Loads are not coincident with energy source availability
- Energy costs are time-dependent (e.g. time-of-use energy rates)
- Charges for peak power demand are high
- Utility rebates, tax credits, or other economic incentives are provided for using load-shifting equipment
- Energy supply is limited, thus limiting or preventing the use of full-size non-storage systems
- Facility expansion is planned, and the existing heating or cooling equipment is insufficient to meet the new peak load but has spare non-peak capacity
- A mission-critical operation requires uninterrupted heating and/or cooling

(Source: ASHRAE HVAC Systems and Equipment Handbook 2020, SI edition, Chp. 50 Thermal Storage)

Comparing media of thermal storage

Storage medium	Volume (L/ton- hour)	Storage temperature (°C)	Discharge temperature (°C)	Strengths		
Chilled water	303-595	4-7	5-8	Can use existing chillers; water in storage tank can do double duty for fire protection		
Ice	68-93	0	1-2	High discharge rates; potential for low temperature air system		
Eutectic salts	170	8	9-10	Can use existing chillers		
Heat capacity Thermal conductivity Latent heat Heat conductivity Heat conductivity Heat conductivity Heat conductivity Heat conductivity Heat conductivity Heat conductivity Heat conductivity Heat Change						
Sensible Heating of fusion Material (PCM) reaction Material (TCM) mage source: https://phys.org/news/2021-12-phase-materials-thermal-energy-storage.html)						

Classification of thermal energy storage types and materials

Sensible thermal storage

- It refers to the heat storage within a medium that does not result in a change of state, e.g.
 - Using building mass (like a Trombe wall) or high thermal-mass materials (passive technologies)
 - Using water storage
- Water is well suited for both hot and cold sensible energy storage applications and is the most common sensible storage medium
 - Specific heat capacity of water = $4.18 \text{ kJ/(kg \cdot K)}$

List of selected solid-liquid materials for sensible heat storage

Medium	Fluid Type	Temperature Range (°C)	Density (kg/m ³)	Specific Heat (J/(kg·K))
Sand	-	20	1555	800
Rock	-	20	2560	879
Brick	-	20	1600	840
Concrete	-	20	2240	880
Granite	-	20	2640	820
Aluminium	-	20	2707	896
Cast iron	-	20	7900	837
Water	-	0–100	1000	4190
Calorie HT43	Oil	12–260	867	2200
Engine oil	Oil	≤ 160	888	1880
Ethanol	Organic liquid	\leq 78	790	2400
Propane	Organic liquid	≤ 97	800	2500
Butane	Organic liquid	≤ 118	809	2400
Isotunaol	Organic liquid	≤ 100	808	3000
Isopentanol	Organic liquid	≤ 148	831	2200
Öctane	Organic liquid	≤ 126	704	2400

(Source: Sarbu I. & Sebarchievici C., 2018. A comprehensive review of thermal energy storage, *Sustainability*, 10 (1) 191. https://doi.org/10.3390/su10010191)
Charging process (working of PCM during daytime) and discharging process (working of PCM during nighttime)

(Source: https://www.mdpi.com/2076-3417/11/4/1490)

Sensible thermal storage

- Examples of sensible thermal storage systems:
 - Empty tank method (one tank for cool supply water + one tank for warm return water)
 - Labyrinth tank (multitude of compartments)
 - Baffle-and-weir (internal walls separated compartments within a tank)
 - Membrane or diaphragm separation
 - Thermally stratified
 - Aqueous sodium nitrite/nitrate

Sensible thermal storage

- Thermal storage tanks can be located above ground, partially buried, completely buried or incorporated into the building structure
 - Such as chilled water thermal storage
 - Thermal stratification & storage tank insulation
 - Storage in aquifers (underground)
- Storage tank options:
 - Steel tanks (need corrosion protection)
 - Concrete tanks (precast or cast-in-place)
 - Plastic tanks (prefabricated modular units)

Chilled water thermal storage system process flow diagrams

(Source: Reliable Chilled Water Using Thermal Storage http://www.powersurety.com/reliable-chilled-water/)

Underground energy storage concept

Pit thermal energy storage (PTES) (60 - 80 kWh/m³) Borehole thermal energy storage (BTES) (15 - 30 kWh/m³)

Aquifier thermal energy storage (ATES) (30 - 40 kWh/m³)

Aquifer thermal energy storage

(Source: https://www.wur.nl/en/show/aquifer-thermal-energy-storage.htm)

Sensible thermal storage

- Chilled water thermal storage sizing options
 - <u>Full storage</u>: the system is sized so that on the peak day, with the exception of chilled-water distribution pumps, the chiller plant can be completely turned off for a certain period of the day (usually the utility company's on-peak period)
 - Partial storage: the system is sized such that, on the peak cooling day, the smallest chiller plant possible can meet the peak cooling load by operating at a constant rate throughout the day in conjunction with the thermal storage system
 - Require the chiller plant to operate during the entire day

(Source: Reddy K., 2018. Review of latent heat thermal energy storage for improved material stability and effective load management, *Journal of Energy Storage*, 15: 205-227. https://doi.org/10.1016/j.est.2017.11.005)

Variation of enthalpy of the storage medium as a function of its temperature in sensible and latent thermal storage

(Source: Fredi G., Dorigato A., Fambri L. & Pegoretti A., 2020. Multifunctional structural composites for thermal energy storage, *Multifunctional Materials*, 3: 042001. https://doi.org/10.1088/2399-7532/abc60c)

Thermal Energy Storage	Specific Heat, kJ/kg K	Thermal Conductivity, W/m K	Density, kg/m ³	Latent Heat of Fusion, kJ/kg
Rock bed	1	3.26	2240	-
Brick	790	0.90	1920	-
Concrete	840	0.79	1600	-
Pebble bed	0.8	2.9	1430	-
Paraffin wax	2.1-8.4	24.06×10^{-2}	920-795	189
Hytherm oil	0.73	0.97	725	-
Glauber's salt	2.5	2.25	1330-1460	251
Organic PCM	2	-	800	190
Inorganic PCM	2	-	1600	230
Granular carbon	0.93	0.11	460	-
Water	4178	0.612	998	334
Al composites	0.89	0.21	2707	-
Iron gravels	0.56	37	7200	-

Thermo-physical properties of commonly used sensible and latent heat storage materials

(Source: Haldorai S., Gurusamy S. & Pradhapraj M., 2019. A review on thermal energy storage systems in solar air heaters, International Journal of Energy Research, 43 (4) 1-17. <u>https://doi.org/10.1002/er.4379</u>)

Comparison between sensible and latent thermal storage techniques

	Operating Principle	Benefits	Materials	Application Domains
Sensible thermal storage	Temperature change (Increase/ Decrease)	 Inexpensive Simple operation 	Water, rock, concrete, etc.	 Concentrated solar power (CSP) Plants or desalination Building heating
Latent thermal storage	Phase change (Solid-Liquid)	 Large storage density Large latent heat Stable temperature 	Paraffins, salt hydrates, metallics, etc.	 Solar applications Building heating/cooling Heat pump Thermal control Industrial waste heat storage

(Source: Mabrouk R., Naji H., Benim A. C. & Dhahri H., 2022. A state of the art review on sensible and latent heat thermal energy storage processes in porous media: mesoscopic simulation, *Applied Sciences*, 12 (14) 6995. <u>https://doi.org/10.3390/app12146995</u>)

Latent thermal storage

- It utilises a medium that transfers heat by changing state (e.g. liquid to solid)
 - Given this additional phase change capability, latent thermal systems have greater capacity to store energy than those of sensible thermal storage
- Main methods of HVAC latent thermal storage:
 - 1. Ice storage (to cool the chilled water)
 - 2. Phase Change Material (PCM) e.g. eutectic salts
 - 3. PCM building fabric (increase thermal mass)

Latent thermal storage

- Examples of latent thermal storage systems
 - Ice harvester (produce sheet ice, tube ice, ice cubes)
 - Ice-on-coil-internal melt (using water-glycol)
 - Ice-on-coil-external melt
 - Encapsulated ice (e.g. small plastic balls)
 - Ice slurry (pumpable ice slurries)
 - Paraffin wax slurries
 - Passive phase change material (PCM)
 - Eutectic salts
 - Triple point carbon dioxide

Basic concept of ice thermal storage system

Latent thermal storage

- Ice thermal storage systems
 - Ice is stored in a tank or other containers to provide cooling for buildings in on-peak hours or on- and partial-peak hours
 - Coolants used (lower freezing temperature): brine, glycol-water
 - The chillers work continuously to produce ice during night, and the ice is melted the next day when the air-conditioning is required

An example of ice thermal storage system

(Source: Trane)

(Source: Brun K., Allison T. & Dennis R. (eds.), 2021. *Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems*, Academic Press, London. <u>https://doi.org/10.1016/C2019-0-00430-X</u>)

Classification of phase change materials (PCMs)

(Source: https://www.intechopen.com/chapters/63027)

Benefits and drawbacks of different phase change materials (PCMs)

Classification	Benefits	Drawbacks
Organic PCMs	 No subcooling No supercooling No phase segregation Large storage capacity High latent heat Recyclable substances Certain renewable substances (fatty acids and alcohols) Available for all temperature range Compatible with other materials 	 Low thermal conductivity (~ 0.2 W.m⁻¹.K⁻¹) Flammable Large volume change Certain non-renewable substances
Inorganic PCMs	 High thermal conductivity High latent heat High storage capacity Small volume change Availability and low cost 	 Supercooling Corrosion Presentation of chemical instability
Eutectics	 No segregation High storage density Adjustable phase transition temperature 	 Lack of test data for certain thermophysical characteristics Same drawbacks of pure organic or inorganic PCMs

(Source: Mabrouk R., Naji H., Benim A. C. & Dhahri H., 2022. A state of the art review on sensible and latent heat thermal energy storage processes in porous media: mesoscopic simulation, *Applied Sciences*, 12 (14) 6995. <u>https://doi.org/10.3390/app12146995</u>)

Thermochemical storage

- It has a higher energy density than sensible and latent thermal storage
 - Using thermo-chemical materials (TCM)
- It can be divided into:
 - 1. <u>Reversible reaction-based storage</u>
 - Two separate chemical substances where a high amount of energy is generated as a result of an exothermic synthesis reaction
 - 2. <u>Sorption-based energy storage</u>
 - Heat is stored by breaking the binding force between the sorbent and the sorbate in terms of chemical potential

Thermochemical storage

• Common methods:

- <u>Chemical looping</u> (e.g. Calcium looping)
 - Such as use of the reversible reaction between calcium oxide (CaO) and carbon dioxide (CO₂) to form calcium carbonite (CaCO₃)
- <u>Salt hydrates sorption</u> (using hydration reactions)
 - Absorbs and releases energy through the hydration and subsequent dehydration of a solid salt
- Absorption systems
 - Heat/cold can be generated in real time using solar absorption heat pumps and stored for later use

Thermochemical storage methods and materials

Example of salt hydration thermal storage system

Absorption system configuration with separator reactor

Absorption storage system scheme

Charging and discharging mode for a district heating system with thermochemical storage (TCS) using Zeolite

(Source: Kalaiselvam S. & Parameshwaran R., 2014. *Thermal Energy Storage Technologies for Sustainability: Systems Design, Assessment and Applications*, Academic Press. https://doi.org/10.1016/C2013-0-09744-7)

(Source: Gunasekara S. N., et al., 2021. Thermal energy storage materials (TESMs)—what does it take to make them fly?, *Crystals*, 11 (11) 1276. https://doi.org/10.3390/cryst1111276)

Further Reading

- Thermal Energy Storage <u>https://celsiuscity.eu/thermal-energy-</u> storage/
- HVAC factsheet Thermal storage https://www.energy.gov.au/publications/hvac-factsheetthermal-storage
 - Videos on thermal heat energy storage:

- Thermal Energy Storage: Sensible Heat (11:10)
 <u>https://youtu.be/9mjMF4qX_w</u>
- Thermal Energy Storage: Latent Heat (10:03)
 <u>https://youtu.be/Tmeb5MM-51U</u>
- Thermal Energy Storage: Thermo Chemical Energy Storage (11:04) <u>https://youtu.be/2DGldaPbVe8</u>

References (books)

- ASHRAE, 2020. *ASHRAE HVAC Systems and Equipment Handbook 2020*, SI edition, Chp. 50 Thermal Storage, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.
- Cabeza L. F. (ed.), 2015. Advances in Thermal Energy Storage Systems: Methods and Applications, Woodhead Publishing. <u>https://doi.org/10.1016/C2013-0-16453-7</u>
- Glazer J., 2019. *ASHRAE Design Guide for Cool Thermal Storage*, 2nd Edition, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.
- Kalaiselvam S. & Parameshwaran R., 2014. *Thermal Energy Storage Technologies for Sustainability: Systems Design, Assessment and Applications*, Academic Press. <u>https://doi.org/10.1016/C2013-0-09744-7</u>
- Sahoo U. (ed.), 2021. *Energy Storage*, Scrivener Publishing, Beverly, MA. <u>https://doi.org/10.1002/9781119555599</u>