Example of Electrical Load Estimation (for total power supply capacity)

(For illustration only, data might not be practical.)

(1) <u>Estimation of Electrical Loading</u>

A. Landlord Services

	1. Lifts & escalators	7 50 1 1 1
	- lifts (15 nos. x 50 kVA) $(10 \times 10^{-10} \text{ kVA})$	750 kVA
	- escalators (10 nos. x 25 kVA)	250 kVA
	2. Water services	200 1-374
	- include fresh water & flush water pumps, fire &	300 KVA
	sprinkler pumps, sump pumps, etc.	
	5. General lighting and power	200 1-374
	- plant rooms, int lobbles, stars, shopping	200 K VA
	aracades, refuse area, etc.	1500 1-1/4
	Sub-total	1500 K VA
	Taking diversity of 0.95 -	1425 kWA
		1423 K VA
в	A/C Chiller Plant	
D.		
	- assume 1.2 kVA/TR and diversity of 0.95.	
	2484 TR x 1.2 kVA/TR x 0.95	2832 kVA
		========
C.	HVAC Equipment	
	- assume 0.6 kVA/TR and diversity of 0.8:	
	2484 TR x 0.6 kVA/TR x 0.8	1192 kVA
D.	Tenant Loads (O/I = office/industrial)	
	1. O/I Tower = 25425 sq.m x 0.16 kVA/sq.m	4068 kVA
	2. Commercial Floors = $8096 \text{ sq.m x } 0.1 \text{ kVA/sq.m}$	810 kVA
	Sub-total	4878 kVA
-		
E.	Basement Carparks	
	0.001344/	
	- assume 0.02 kVA/sq.m:	
	3806 sq.m x 0.02 k vA/sq.m	/6 KVA

Summary:

	Loading	No. of Tx
A. Land Services	1425 kVA	1 Tx
B. A/C Chiller Plant	2832 kVA	2 Tx's
C. HVAC Equipment	1192 kVA)
D. Tenant Loads	4878 kVA) 4 Tx's
E. Basement Carparks	76 kVA)
Total maximum demand	10403 kVA	7 Tx's

Taking demand factor of 0.95, peak demand is estimated to be: 10403 x 0.95 = 9883 kVA

Therefore, 7 nos. of 1.5 MVA transformers are provided.

Total installed capacity = $7 \times 1500 = 10500 \text{ kVA}$

Spare capacity = $(10500 - 9883) / 9883 \times 100\% = 6.2\%$

The spare capacity prepares for future expansion and addition of loading in the building.

(2) Estimation of Essential Loads

		Estimated Loads
1.	Firemen's lift (1 no.)	50 kVA
2.	Fire pumps & sprinkler pumps	100 kVA
3.	Essential lighting & exit signs	50 kVA
4.	F.S.control, PABX, central monitoring	40 kVA
5.	Essential ventilation & staircase pressurization	100 kVA
6.	Others	40 kVA
	Total =	380 kVA

An emergency generator of **400 kVA** will be installed to maintain the essential services during mains power failure.

(3) <u>Electrical Supply Arrangement</u>

The electrical supply distribution system comprises the landlord and the tenant systems.

Three arrangements of Tx rooms for the 7 nos. Tx's are considered:

(a)	in three Tx rooms	 3, 3, 1 Tx's
(b)	in three Tx rooms	 3, 2, 2 Tx's
(c)	in four Tx rooms	 2, 2, 2, 1 Tx's

Options (b) & (c) occupy slightly more floor space. Also, considering the division of tenant and landlord loads, option (a) is proposed and the loading of the Tx's will be arranged as follows:

i.	Landlord Tx room	 landlord services chiller plant	1 Tx 2 Tx's
ii.	Tenant Tx rooms	 O/I tower Commerical floor & B/F	3 Tx's 1 Tx