MECH3423 Building Services Engineering II http://me.hku.hk/bse/MECH3423/

HVAC Water-side Systems

Dr. Sam C. M. Hui Department of Mechanical Engineering The University of Hong Kong E-mail: cmhui@hku.hk

Jan 2016

Contents

• Pipe Systems and Design

• Water Systems in HVAC

Centrifugal Pumps

Pump Arrangements

- Common types of HVAC piping systems
 - Chilled water (CHW) system
 - Condenser water (CW) system
 - Sea water system
 - Hot water supply system
 - Steam pipes, gas pipes
- Similar systems in other building services
 - Water supply & distribution (plumbing)

[Source: Kreider, K. F. (ed.), 2001. Handbook of Heating, Ventilation, and Air Conditioning, CRC Press, Boca Raton, FL.]

• Two major concerns:

- Size the pipe (e.g. from charts & tables)
- Determine the flow-pressure relationship
 - To analyse the system, e.g. to find out pump pressure
 - By using manual or computer-based methods
- Calculations for pipelines or pipe networks
 - Can be very complicated for branches & loops
 - Basic parameters: pipe diameter, length, friction factor, roughness, velocity, pressure drop

- Basic equations
 - <u>Darcy-Weisbach Equation</u> (for fully developed flows of all Newtonian fluids)

$$\Delta p = f\left(\frac{L}{D}\right)\left(\frac{\rho V^2}{2g}\right) \quad \text{or} \quad \Delta h = f\left(\frac{L}{D}\right)\left(\frac{V^2}{2g}\right)$$

• <u>Colebrook-White Equation</u> (for transition region):

$$\frac{1}{\sqrt{f}} = 1.14 + 2\log(D/\varepsilon) - 2\log\left[1 + \frac{9.3}{\operatorname{Re}(\varepsilon/D)\sqrt{f}}\right]$$

• * The equation is implicit in *f* (appears on both sides), so iterations are required to solve for *f*.

- Basic equations (cont'd)
 - <u>Hazen-Williams Equation</u> (alternative to Darcy-Weisbach formula; empirical) $\Delta p = 6.819L \left(\frac{V}{C}\right)^{1.852} \left(\frac{1}{D}\right)^{1.167} (\rho g)$
 - C = roughness factor (typically, C = 150 for plastic or copper pipe, C = 140 for new steel pipe, C < 100 for badly corroded or very rough pipe)

- Valve and fitting losses
 - May be greater than pipe friction alone

$$\Delta p = K_L \rho \left(\frac{V^2}{2} \right)$$
 or $\Delta h = K_L \left(\frac{V^2}{2g} \right)$

- $K_L = \text{loss coefficient} (K \text{ factor}) \text{ of pipe fittings}$
 - Geometry and size dependent
 - May be expressed as equivalent lengths of straight pipe
- Valve coefficient (A_v) :
 - Volume flow rate $Q = A_v \sqrt{\Delta p / \rho}$

Fitting	K _L
Globe valve, fully open	10.0
Angle valve, fully open	5.0
Butterfly valve, fully open	0.4
Gate valve, fully open	0.2
3/4 open	1.0
1/2 open	5.6
1/4 open	17.0
Check valve, swing type, fully open	2.3
Check valve, lift type, fully open	12.0
Check valve, ball type, fully open	70.0
Foot valve, fully open	15.0
Elbow, 45 ^o	0.4
Long radius elbow, 90 ^o	0.6
Medium radius elbow, 90°	0.8
Short radius (standard) elbow, 90°	0.9
Close return bend, 180°	2.2
Pipe entrance, rounded, r/D < 0.16	0.1
Pipe entrance, square-edged	0.5
Pipe entrance, re-entrant	0.8

Table 2.5 Loss Coefficients for Fittings

(Source: Larock, Jeppson and Watters, 2000: *Hydraulics of Pipeline Systems*)

- Practical design issues
 - Select a pipe size for desired total flow rate and available or allowable pressure drop, e.g.
 - Often assume 2.5 m / 100 m pipe length
 - Velocity limit 1.2 m/s for pipe < 50 mm dia., pressure drop limit 400 Pa/m for pipe > 50 mm dia.
 - Rule of thumb for practical design:
 - Assume design pipe length is 1.5 to 2.0 times actual to account for fitting losses; after pipe diameter is selected, then evaluate the influence of each fitting
 - Other considerations: e.g. noise & water hammer

Fig. 4 Friction Loss for Water in Commercial Steel Pipe (Schedule 40)

(Source: ASHRAE Handbook Fundamentals 2005, Chp. 36)

(Source: ASHRAE Handbook Fundamentals 2005, Chp. 36)

- HVAC water systems can be classified by
 - Operating temperature
 - Flow generation
 - Pressurization
 - Piping arrangement
 - Pumping arrangement

- Open water systems, e.g. using cooling tower
- Closed water systems
 - Chilled water (CHW) system [4-13 °C, 825 kPa]
 - Condenser water (CW) system
 - Dual temperature water system
 - Low temp. water (LTW) system [Max. 120 °C, < 1100 kPa]
 - Medium temp. water (MTW) system [120-125 °C, < 1100 kPa]
 - High temp. water (HTW) system [> 175 °C, > 2070 kPa]
- Once-through system, e.g. sea water system

Series circuit with load pumps

Primary-secondary loop and pumping

- Heat transfer in water systems
 - Terminal units/devices that convey heat from/to water for heating/cooling
 - Common heat exchangers
 - Water-to-air finned coil
 - Water-to-water
 - Heating load devices, e.g. radiators
 - Cooling load devices, e.g. fan coil units (FCU)

Calculate Heat Transferred to or from Water:

$$q_w = 1000 \dot{m} c_p \Delta t$$

where

- q_w = heat transfer rate to or from water, W
- \dot{m} = mass flow rate of water, kg/s
- c_p = specific heat of water, kJ/(kg·K)

 Δt = water temperature increase or decrease across unit, K 1000 = constant to change kJ in c_p to J

$$q_w = \rho_w c_p Q_w \Delta t$$

where

$$Q_w$$
 = water flow rate, L/s
 ρ_w = density of water, kg/m³

- Design issues
 - Design water temperature
 - Flow rate
 - Piping layout
 - Pump selection
 - Terminal unit selection
 - Control method

þ

Water Systems in HVAC

- Design principles
 - Constant flow? Variable flow? Intermittent flow?
 - Direct return piping or reverse return piping
 - Direct return riser & reverse zone piping
- Design factors
 - Pump speed controls
 - Pressure distribution
 - System balancing
 - Thermal expansion & joints (or loops)

• Piping materials

- Chilled water: black & galvanized steel
- Hot water: black steel, hard copper
- Condenser water: black steel, galvanized ductile iron, PVC
- Flow rate measurements
 - Venturi, nozzle & orifice flowmeters
 - Variable area flowmeters (rotameters)
 - Turbine flowmeters

- Other design considerations
 - Makeup water (from city water or wells)
 - Safety relief valves (for pressurised systems)
 - Air elimination (e.g. by air separator/vent)
 - Drain (at low points) & shutoff (for isolation)
 - Balance fittings (allow balancing of sub-circuits)
 - Strainers (remove dirt)
 - Insulation (reduce heat loss & condensation)
 - Condensate drains (to drainage system or recover)

- Practical design process (see reference)
 - See "*Practical Guide to HVAC Building Services Calculations*" - water flow distribution systems: overview of system design process
 - W1 Pipe sizing general
 - W2 Pipe sizing straight length
 - W3 Pipe sizing pressure drop across fittings
 - W4 System resistance for pipework index run
 - W5 Pump sizing
 - W6 Water system pressurisation

Centrifugal Pumps

- Centrifugal pump
 - Most widely used in HVAC applications, e .g.
 - Hot water systems
 - Chilled water systems
 - Condenser water systems
 - Boiler feed and condensate return pumps
 - Operation
 - Electric motor's output torque => impeller's rotation
 - Coupling to the pump shaft
 - Centrifugal force & tip speed force

(Source: Fundamentals of Water System Design)

A double-suction, horizontal split-case, single-stage centrifugal pump

(Source: Wang, S. K., 2001. Handbook of Air Conditioning and Refrigeration)

* Video: How does a Centrifugal pump work ? (4:37) <u>http://www.youtube.com/watch?v=BaEHVpKc-1Q</u> <u>http://www.learnengineering.org/2014/01/centrifugal-hydraulic-pumps.html</u>

(Source: Fundamentals of Water System Design)

Centrifugal Pumps

- Variable speed pumps
 - Less expensive nowadays
- Centrifugal pump characteristics*
 - Total pressure-capacity curve
 - Flat curve: applied on closed piping systems with modulating valves
 - Steep curve: usually for open piping systems (cooling towers), w/ high pressure, constant flow
 - Family of pump performance curves

* Video: Centrifugal Pumps | Design Aspects (5:32) <u>http://www.youtube.com/watch?v=pWSyrxFJmt4</u> <u>http://www.learnengineering.org/2013/03/centrifugal-pumps-design-aspects.html</u>

Total Pressure, kPa

Capacity, L/s

(Source: Fundamentals of Water System Design)

Total pressure-capacity curve

(Source: Fundamentals of Water System Design)

Characteristic curves for pump models

⁽Source: Fundamentals of Water System Design)

⁽Source: Fundamentals of Water System Design)

Centrifugal Pumps

- System pressure characteristic curve
 - Compared w/: fan-duct system characteristics
 - System operating point: intersection of fan curve & system curve
- Pump power (W) = flow (L/s) x pressure (kPa)
 - Pump input power
 - Pump efficiency
 - Matching pump to system curve
 - Best efficiency point

Increase of pumping power required with pump flow

Capacity, L/s

(Source: Fundamentals of Water System Design)

Pump efficiency

(Source: Fundamentals of Water System Design)

Centrifugal Pumps

- Similarity relationships
 - Pump affinity laws (c.f. fan laws)

Function	Speed change	Impeller diameter change
Flow	$Q_2 = Q_1 (N_2/N_1)$	$Q_2 = Q_1 (D_2/D_1)$
Pressure	$p_2 = p_1 (N_2/N_1)^2$	$p_2 = p_1 (D_2/D_1)^2$
Power	$P_2 = P_1 \ (N_2/N_1)^3$	$P_2 = P_1 \ (D_2/D_1)^3$

Centrifugal Pumps

- Pump affinity laws (example)
 - A pump is rated at 15 L/s at 200 kPa with a 24 rpm electric motor. What is the flow and pressure if used with a 16 rps motor? Assume no system static pressure.
 - <u>Solution</u>:
 - Flow: $Q_2 = Q_1 (N_2/N_1) = 15 (16/24) = \underline{10 \text{ L/s}}$

• Pressure: $p_2 = p_1 (N_2/N_1)^2 = 200 (16/24)^2 = \underline{88.9 \text{ kPa}}$

(Source: ASHRAE HVAC Systems and Equipment Handbook 2004)

Pump Arrangements

- Pump selection process
 - Determine the load to be pumped
 - Determine design Δt & calculate required flow
 - Sum up the load flows to determine total flow
 - Determine the "critical path" (most resistant)
 - Determine mounting method & support
 - Select a pump from manufacturer
 - Flat curve & steep curve, pump operation & motor
 - Check overflow capacity when staging multiple pumps

(Source: ASHRAE HVAC Systems and Equipment Handbook 2004)

Reduction of theoretical Euler head due to losses

(Source: Grundfos)

Increase in power consumption due to losses

(Source: Grundfos)

Pump performance data

⁽Source: Fundamentals of Water System Design)

Pump Arrangements

- Pumping arrangements & control scenarios
 - Multiple pumps in parallel or series
 - Standby pump
 - Pumps with two-speed motors
 - Primary-secondary pumping
 - Variable-speed pumping
 - Distributed pumping

Pump curve for parallel operation

(Source: Fundamentals of Water System Design)

Operating conditions for parallel pump installation

⁽Source: Fundamentals of Water System Design)

Pump curve for series operation

(Source: Fundamentals of Water System Design)

(Source: Fundamentals of Water System Design)

