MECH4423 Building Energy Management and Control Systems http://ibse.hk/MECH4423/

Optimization of HVAC Systems

Ir Dr. Sam C. M. Hui Department of Mechanical Engineering The University of Hong Kong E-mail: cmhui@hku.hk

Feb 2024

Contents

- Basic concepts
- HVAC DDC system
- DDC controllers
- HVAC control examples
- Central plant optimization

Basic concepts

- Heating, ventilation & air conditioning (HVAC) systems
 - Control the temperature, humidity & purity of the air in an enclosed space to provide <u>thermal</u> <u>comfort</u> & acceptable <u>indoor air quality (IAQ)</u>
 - Can provide ventilation/air movement & maintain pressure relationships between spaces
 - System design should be within reasonable installation, operation & maintenance costs

(Source: https://www.pharmaguideline.com/2017/05/basics-of-hvac-system.html)

Basic concepts

- Key elements of HVAC systems:
 - Thermostat & sensors, controllers
 - Ventilation fans, air handling units, fan coil units
 - Air ductwork, air filters, dampers, VAV boxes
 - Air conditioner, chillers
 - Compressor, condenser, cooling towers
 - Pumps & piping, control valves
 - Boilers & furnace, heat exchanger

Basic concepts

- Key personnel for HVAC system projects:
 - HVAC system designer
 - Responsible for conceptual design, tendering, etc.
 - Controls vendor sales representative
 - Provide advice on control products & features
 - Mechanical & electrical contractors
 - Installation of mechanical & electrical parts
 - Controls contractor
 - Details of control system + part of the installation
 - Facility managers & operators
 - Operation & maintenance

Design, plan, specification

Installation

Operation, monitoring

Using BAS to control major HVAC systems & equipment

[Source: Johnson Controls]

Basic concepts

- HVAC sub-systems & components:
 - 1. Air-side (e.g. fans, air duct)
 - 2. Water-side (e.g. pumps, piping)
 - Chilled water, condenser water, seawater, etc.
 - 3. Refrigeration equipment
 - 4. Heat rejection (e.g. cooling towers)
 - 5. Controls
- Including centralised, partially centralised & local HVAC systems

Example of a centralised HVAC system

⁽Source: Wang, S. K., Lavan, Z. and Norton, P., 2000. Air Conditioning and Refrigeration Engineering)

HVAC sub-systems & components

Air side:

- 1. Outdoor air intake (screen, louvers, dampers)
- 2. Preheater
- 3. Return air intake (dampers)
- 4. Filter
- 5. Cooling coil
- 6. Dehumidifier
- 7. Heating coil
- 8. Humidifier
- 9. Fan
- 10.Duct system
- 11.Air outlet
- 12. Air terminal (with outlet)

Refrigeration side:

 Refrigeration machine or chiller (compressor, condenser, cooler and refrigerant piping)

Water side:

- 1. Pumps
- 2. Water piping

Heat rejection:

1. Cooling tower

Heating side:

- 1. Boiler & auxiliaries
- 2. Piping (hot water or steam)

Air-side & control sub-systems for a typical floor of a HVAC system

(Source: Wang, S. K., Lavan, Z. and Norton, P., 2000. Air Conditioning and Refrigeration Engineering)

HVAC DDC system

- Direct digital control (DDC) system
 - Microprocessor-based open or closed loop control of an output device based upon input data & a sophisticated control algorithm, typically proportional, integral & derivative (PID)
 - Complex strategies & energy management functions are available
 - Provide alarm & trending functions
 - Central diagnostic capabilities are also possible

HVAC DDC system

- Design an effective direct digital control (DDC) system
 - Simplicity & effective technical communication
- Types of DDC signals:
 - <u>Digital output (DO)</u>, e.g. command to open a valve
 - <u>Digital input (DI)</u>, e.g. status signal from a fan
 - <u>Analogue input (AI)</u>, e.g. room temperature
 - <u>Analogue output (AO)</u>, e.g. command to modulate a control valve

Control point designations for a constant volume single zone AHU

[Source: Shadpour, F., 2001. The Fundamentals of HVAC Direct Digital Control]

An example of a DDC point list

		Poir					
Point	DO	DI	AI	AO	Remarks		
Supply fan	1	1					
Return fan	1	1					
Duct tempera- ture sensors			3				
Chilled and hot water valves				2			
Room tempera- ture sensor			1				
Smoke detector		1					
Total	2	3	4	2			

[Source: Shadpour, F., 2001. The Fundamentals of HVAC Direct Digital Control]

Example of point list for a variable air volume (VAV) terminal unit

	Hardware Points				Software Points]		
Point Name	AI	AO	BI	во	AV	BV	Loop	Sched	Trend	Alarm	Show On Graphic		
Zone Temp	x								х		x		
Zone Setpoint Adjust	x										x		
Airflow	x								x		x		
Zone Damper		x									x		
Zone Override			x						x		x		
Airflow Setpoint					x				x		x		
Heating Mode						x			x				
Schedule								x					
Heating Setpoint									x		x		
Cooling Setpoint									x		x		
High Zone Temp										x			
Low Zone Temp										x			
Totals	3	1	1	0	1	1	0	1	7	2	8		
Total Hardware (5)						Total Software (12)							
AI = Analogue input							AV = Analogue value						
AO = Analogue output							BV = Binary value						
BI = Binary (Digital) input								Sched =					
BO = Binary (Digital) output									Trend = Trend log				

(Source: https://guidelines.vancouver.ca/guidelines-technical-direct-digital-control-systems-hvac.pdf)

DDC control for an air heater with outdoor reset

Examples of ladder & line diagrams for HVAC systems

[Source: http://www.electrical-knowhow.com/2014/05/How-to-read-Electrical-Wiring-Diagrams.html]

Operator graphic display for HVAC control

[Source: Honeywell, 1997. Engineering Manual of Automatic Control for Commercial Buildings]

DDC controllers

- DDC controller or control panel
 - The "brain" of the system
 - Main components:
 - Power supply
 - Central processing unit (CPU)
 - Terminal board or module
 - Communication board or module
 - Battery back-up
 - Gateways, bridges, routers & repeaters

DDC Personal Computer DDC DDC DDC

HVAC DDC controller for a heating hot water boiler system

(Source: https://mepacademy.com/6-steps-for-designing-hvac-ddc-controls/)

DDC controllers

• External components

- Uninterruptable power supply (UPS)
- Operator/human machine interface (OMI/HMI)
 - Human-machine or person-machine interface
 - A monitor & a keyboard or a personal computer
- Smart sensors & actuators
 - Temperature, humidity & pressure sensors
 - Contain intelligence & some form of control capability
 - May transmit/receive signal directly to/from the network

Sensors for building automation system (BAS)

DDC controllers

Classification of DDC controllers

- <u>Unit level</u>: unitary, zone level, application specific
 - Small size, limited points & non-expandable, less costly
- <u>Equipment level</u>: equipment, system level
 - Larger size, adequate points for a range of applications
- <u>Plant level</u>: more than one equipment
 - Much larger size & more point count, programming
- Building level (network)
 - A system level router, handle high-speed network traffic

[Source: https://www.automatedbuildings.com/news/apr08/columns/080325113602calabrese.htm]

DDC controllers

- DDC controller software
 - The software determines the functionality
 - Two categories of controller software:
 - 1. <u>Operating software</u>: controls the basic operation of the controller; normally stored in non-volatile memory e.g. ROM (read-only memory), as firmware
 - 2. <u>Application software</u>: addresses the unique control requirements of specific applications e.g. energy management, lighting control, event initiated programs plus other alarm & monitoring functions; using different programming languages
 - May also integrate Supervisory Control and Data Acquisition (SCADA) package for real-time monitoring

HVAC control examples

- Examples of HVAC control applications:
 - Typical single-zone air handler
 - Single-zone unit with dual setpoint thermostat
 - Typical variable air volume (VAV) system
 - Chilled water, economizer & hot water sequencing
 - VAV box control
 - Typical constant air volume (CAV) system
 - Chillers, pumps & boilers monitoring & control
 - Direct expansion (DX) systems & heat pumps

[Source: Montgomery, R. and McDowall, R., 2008. Fundamentals of HVAC Control Systems]

Chilled water, economizer & hot water sequencing

Control diagram of a variable air volume (VAV) reheat system for yearround operation

Can you understand all the symbols & abbreviations?

[Source: Wang, S. K., 2001. Handbook of Air Conditioning and Refrigeration]

[Source: Montgomery, R. and McDowall, R., 2008. Fundamentals of HVAC Control Systems]

Variable speed drives (VSDs) in air-conditioning systems

Example of chiller plant control interface

Example of direct expansion (DX) based variable refrigerant flow (VRF) system --- refrigerant circuit & control communication devices

(Source: Fujitsu)

HVAC control examples

- HVAC indoor control applications:
 - Temperature & humidity monitoring & control
 - Carbon dioxide control (ventilation rate)
 - Exhaust fan control (thermostats or interlock)
 - Fume hood control (in laboratories)
 - Condensate management & control (on microbial)
 - Ventilation/outside air monitoring & control
 - Filtration monitoring & control

Demand control ventilation (DCV) control to adjust ventilation rate for full & partial occupancy

(Source: https://www.advancedcontrolsolutions.com/Demand-Control-Ventalation-and-Energy-Savings)

(Source: https://www.automatedbuildings.com/news/aug12/articles/climatec/120724035404climatec.html)

- In large buildings, a HVAC central plant is usually the primary source of cooling or heating, delivering thermal energy as chilled or hot water to HVAC systems
- Improving the efficiency of the generation & distribution of thermal energy reduces energy wastage at the source
- A small percentage improvement can produce large overall savings

Building automation system

Local supply

(Source: Schachinger D. & Kastner W., 2018. Context-aware optimization strategies for universal application in smart building energy management, In *2018 IEEE 16th International Conference on Industrial Informatics (INDIN)*, Porto, Portugal, 2018, pp. 478-483. http://doi.org/10.1109/INDIN.2018.8472000)

Central plant optimization

- Plant equipment efficiencies vary with load & external conditions
- Central plants have multiple chillers, boilers, & power generators, which may differ from each other in capacities & performance
 - The ability to select equipment & operate it at optimized points to minimize the total energy
- Modelling the load dynamics offers the additional benefits of predictive optimization

System architecture of a chiller plant optimisation

(Source: Suen A. T. Y., Ying D. T. W. & Choy C. T. L., 2021. Application of artificial intelligence (AI) control system on chiller plant at MTR station, *HKIE Transactions*, 29 (2) 90-97. https://doi.org/10.33430/V29N2THIE-2021-0032)

Optimization of HVAC central plant

A <u>demand forecaster</u> predicts loads for the next 24 hours period based on the current weather, load history, & occupancy criteria.

A <u>dynamic load model</u> represents the building response to changes in energy supplied. Based on the inputs of upcoming demand loads, central plant performance & building response, the <u>optimizer</u> solves the schedules & operating commands for the major equipment in the supply & distribution of chilled & hot water.

(Source: Wen J. T. & Mishra S., 2018. Intelligent Building Control Systems A Survey of Modern Building Control and Sensing Strategies)

Basic concept of a dynamic real-time supervisory optimizer

(Source: Wen J. T. & Mishra S., 2018. Intelligent Building Control Systems A Survey of Modern Building Control and Sensing Strategies)

(Source: Wen J. T. & Mishra S., 2018. Intelligent Building Control Systems A Survey of Modern Building Control and Sensing Strategies)

Dashboard showing the real-time monitoring of chiller plants

General Engineering Services 🗱 EMSD Dolly Mode 1: GOVERHMENT OFFICES 1: NVAC Government Office Alarm Record A GOVERNMENT OFFICES WLWCC-CP-85-05 PANELALM 30 2020-07-24 15:00:36 two of Strenety Address 118 GFA: 199300 Building lyps Solviet. **Eulding** Height 1763 AHE-S-RF-0T-UV-TRIP, ALM 30 Completion Date 3.2009-E Subsegiors 2020-07-24-02:00:00 POMNTEL23COB DITT 30 2020-06-01 15:05:37 Normal Alert Critical Fata Cert Alert \otimes (1)0 5 17 0 0 PGMSTE2:/O03.DI09 30 2020-06-01 14:41:24 Chiller Overall Total Cooling Cap. 17586kW SCP-CP-8F-02.POW/ALM 30 2020-06-01 08:54:10 WCC01 Automatic WCC02 0..... 0 111 · Constitution Distant · Ownighter O Downinas 2 100% 0.00 100% 0.00 3517kW 13-30 3517kW 17.73 AHU-S-3F-02 PAY ALM 30 2020-05-30 13:09:54 WCC04 WCC03 Autom de Constantinai Children . Contraction of Contra 0 H · SHELO C harden O Deside 0.1/11 100% 100% 3517kW 6.68 0.00 3517kW 19.35 0.00 -..... 30. AFA, NT SHUT-82-FS08 2020-05-28-09:19:22 WCC05 -----WCC06 Composition O Halina Doerite: 0 +11 · Contractions O haine Ø Operation 0.01 0% 00.0 0.00 100% 0.00 17598W 1759kW 88.51 4-1-1

(Source: https://www.hkengineer.org.hk/issue/vol50-oct2022/feature_story/?id=17083)

Central plant optimization

- Analysis of inputs for plant optimization
 - Equipment performance models (predictors)
 - Weather forecasts (for ambient conditions)
 - Load predictions (for hourly loads)
 - Utility pricing (demand chargers & tariffs)
 - Calendars & maintenance schedules (events)
- Help operators on both plant design & operating decisions to minimize lifecycle costs while delivering reliable services

HVAC central plant optimization using predictive algorithms to automatically make adjustments to minimize cost & energy **Central Plant Optimization Predictive Cost** Optimization Inputs & Predictors Equipment Dispatch & System Set Points Utility Market Chillers Cogeneration Boilers Load Weather Pumps Rates Predictions Forecasts HC Equipment Calendar/ Battery Cooling Heat Heat Performance Maintenance Storage Towers Exchangers Pumps 6----Monitor & Adapt (Source: https://www.johnsoncontrols.com/en_au/digital-solutions/central-plant-optimization)

Achieving plant efficiency potential is determined by both the design & operating decisions

MEASUREMENT & VERIFICATION

MAINTENANCE

OPTIMIZATION

AUTOMATION OF SYSTEM

APPLICATION OF COMPONENTS

SELECTION OF SYSTEM COMPONENTS

DESIGN OF SYSTEM INFRASTRUCTURE

(Source: Seven Steps to Maximizing Central Plant Efficiency (Johnson Controls) <u>https://www.johnsoncontrols.com/-/media/jci/be/united-</u>states/services-and-support/optimization-and-retrofit-services/files/be_wp_centralplantoptimization.pdf)

(Source: https://optimumenergyco.com/how-to-optimize-an-hvac-system/)

Central plant optimization

- Self-tuning methods for HVAC central plant
 - 1) <u>Auto-tuning</u> software feature
 - 2) <u>Adaptive techniques</u> recognize changing conditions, and choose different control settings based on the sensed condition
 - 3) <u>Fuzzy logic control</u> the system monitors many inputs & performs a pseudo-logic operation on these data to assign a 'degree of control'
 - 4) <u>Neural network</u> 'teach' the system how to react to given scenarios (like human brain)

Further reading

- Basic HVAC Controls
 - https://mepacademy.com/basic-hvac-controls/
- 6 Steps for Designing HVAC DDC Controls https://mepacademy.com/6-steps-for-designing-hvacddc-controls/
- How to optimize an HVAC system
 https://optimumenergyco.com/how-to-optimize-anhvac-system/