SBS4113 Architecture & Buildings

http://ibse.hk/SBS4113/

What are buildings for?

Ir. Dr. Sam C. M. Hui Faculty of Science and Technology E-mail: cmhui@vtc.edu.hk

Aug 2016

About Me

• Ir. Dr. Sam C. M. Hui (Building Services Engineer)

PhD, BEng(Hons), CEng, CEM, BEAP, BEMP, HBDP, MASHRAE, MCIBSE, MHKIE, MIESNA, LifeMAEE, AssocAIA

- CEng = Chartered Engineer
- CEM = Certified Energy Manager
- BEAP = Building Energy Assessment Professional
- BEMP = Building Energy Modeling Professional
- HBDP = High-performance Building Design Professional
- LifeMAEE = Life Member, Association of Energy Engineers
- ASHRAE Distinguished Lecturer (2009-2011)
- 20 yrs. teaching in HKU Departments of Architecture and Mech. Engg.
- Research interests: energy efficiency in buildings and sustainable building technologies

Contents

• My favourite building

• Architecture is ...

• Building science is ...

• Building performance

What makes these buildings look interesting?

How do people use these buildings?

Draw a sketch of your favourite building. Write down why it is your favourite.

My favourite building is:

A sketch of the building:

Why it is your favourite?:

Architecture is ...

- What is Architecture?
 - The art and science of designing and constructing buildings
 - A style and method of design and construction
 - Buildings and other large structures
 - Orderly arrangement of parts, structure
- Major issues
 - Art and science
 - Regional identity
 - Reflection of place and time

Architecture is ...

(Video: What is Architecture? (1:36) <u>www.youtube.com/watch?v=wQT7FXKvd28</u>)

Architecture is ...

(Video: How to design like an architect | A modern home (5:28) <u>www.youtube.com/watch?v=1QpB8icfz4I</u>)

Nowadays, architecture and building design are challenging tasks!

BSE = Building Services Engineer

Building design is a team work.

Organisation structure of building projects

- A field of knowledge that draws upon physics, chemistry, engineering, architecture, and the life sciences
- Scientific knowledge that focuses on analysis and control of the physical phenomena affecting buildings and architecture
- Related terms: architectural science, building physics, environmental design

(Video: Building Physics - An Introduction (1:00) <u>www.youtube.com/watch?v=UNH347z0Bpc</u>)

- The study of how buildings function under various environmental conditions
 - To understand the physical behaviour of the building as a system and how this impacts energy efficiency, durability, comfort and indoor air quality
 - To achieve acceptable/high building performance

- Studying the interaction between:
 - Occupants (people)
 - Building components/systems, and
 - Environment
- Focusing on flows of:
 - Heat
 - Air
 - Moisture

Site & Services Infrastructure

- The building as a system approach primary elements:
 - <u>Building enclosure</u> (building envelope system)
 - <u>Inhabitants</u> (humans, animals, and/or plants, etc.)
 - <u>Building services</u> (electrical/mechanical systems)
 - <u>Site</u>, with its landscape and services infrastructure
 - <u>External environment</u> (weather and micro-climate)
- Harmonization of these elements is the key to well-performing buildings

Design of the built environment

Major Building Services Systems and Components

Compare building systems with human body

Building Systems

Figure 14.4 Body-building system integration.

(Source: Ahuja, A., 1997. Integrated M/E Design: Building Systems Engineering, Chapman & Hall, New York.)

Human

Body

Major site factors

Building designer is like a "Feng Shui" master.

Major climatic elements of Hong Kong

- Physical forces and primary physical mechanisms associated with climate and weather:
 - <u>Heat Flow</u> the conductive, convective, and radiative flow of heat;
 - <u>Air Flow</u> the air flow across and within the building enclosure due to air leakage and ventilation;
 - <u>Moisture Flow</u> the flow of water and vapour across and within the building enclosure; and
 - <u>Solar Radiation</u> the influence of insulation on the opaque and transparent enclosure components

(Video: Building Physics (2:08) <u>http://video.arup.com/?v=1_1vu717rn</u> / <u>www.youtube.com/watch?v=-fmiptHvECs</u>)

Physical mechanisms driving the behaviour of the building as a system

Building performance

- *"Performance*" may be defined as the level of service provided by a building material, component, or system, in relation to an intended, or expected, threshold or quality
- Performance parameters, e.g.
 - Structural
 - Fire and safety
 - Sound insulation (acoustic)
 - Environmental
 - Energy efficiency

Index of Building (Houses) Performance (Japan)

Building performance

• CIB definition *:

• "The objectively identifiable qualitative or quantitative characteristics of the building which help determine its aptitude to fulfil the different functions for which it was designed."

• Trends:

- Use it as the major criteria for building design
- The need to study, measure, and predict the level of building performance (to *quantify*)

(* CIB = International Council for Research and Innovation in Building & Construction)

Performance of a car

(Such as fuel efficiency)

<u>Performance</u> of a building/flat

We get info. about performance of a car, what about buildings?

Building science hierarchy of performance requirements

AESTHETICS

Aesthetic considerations may be applied to building envelope alternatives that satisfy the preceding criteria.

SUSTAINABILITY

Hygrothermal performance, along with the selection of materials and methods, influence sustainability.

ENVIRONMENTAL SEPARATION / MODERATION

Control of heat, air, moisture and solar radiation passively influence the quality of indoor environment.

HEALTH AND SAFETY

Minimum requirements for health and safety represent a necessary but insufficient condition for high performance.

Building performance

- Set up a framework to represent:
 - External & internal conditions affecting a building system
 - (e.g., climate, weather, site, occupancy, and indoor climate class)
 - Parts and inter-relationships comprising a building system
 - (e.g., the behaviour of materials, components, equipment and subsystems)
 - Parameters or indicators defining acceptable performance
 - (e.g., aesthetics, health and safety, economy, sustainability, etc.)
 - Methods, tools, and techniques for designing and analyzing performance according to the parameters, inter-relationships and conditions cited above

Contemporary context for building performance objectives

The assessment of building performance involves numerous interfaces between the building, its occupants, and the natural and built environment.

Physics, materials, components, and systems

THE RELATIONSHIP OF PHYSICS, MATERIALS, COMPONENTS AND SYSTEMS IN A BUILDING PERFORMANCE OBJECTIVES FRAMEWORK

Further Reading

- Building science Wikipedia
 - http://en.wikipedia.org/wiki/Building_science
- Building Science Concepts | Whole Building Design Guide
 - http://www.wbdg.org/resources/buildingscienceconcepts.php

Useful References

- Hens, H. S. L. C., 2012. Building Physics: Heat, air and moisture: fundamentals and engineering methods with examples and exercises, 2nd ed., Ernst & Sohn, Berlin.
- Pohl, J., 2011. *Building Science: Concepts and Application*, Wiley-Blackwell, Chichester, West Sussex, United Kingdom.
- Szokolay, S. V., 2014. *Introduction to Architectural Science: the Basis of Sustainable Design*, third edition, Routledge, Abingdon, Oxon and New York, NY.