SBS5312 Lighting Technology

http://ibse.hk/SBS5312/

Lighting Calculations

Ir. Dr. Sam C. M. Hui
Faculty of Science and Technology
E-mail: cmhui@vtc.edu.hk

- Design Considerations
- Typical Calculations
- Lumen Method
- Point-by-point Method
- Other Calculations
- Outdoor Lighting

Video: Lighting Calculations (5:51)

- http://www.youtube.com/watch?v=sfbXx13JgeU
- Basic lighting calculations that are required to carry out a lighting design
 - Luminous flux, luminous intensity, illuminance, luminance, colour rendering, colour temperature
 - Glare, working plane, surface reflectances
 - Indoor lighting: calculations are done for both the direct and inter-reflected light; room geometry; maintenance
 - Outdoor lighting: light falls directly on the working plane

- Lighting design checklist
 - Safety (e.g. emergency escape lighting)
 - Task requirements
 - Lighting scheme to provide suitable quantity and direction for the task; colour rendering; glare problems
 - Lighting appearance
 - Architecture/Interior design
 - Energy efficiency
 - Lighting equipment, controls, daylighting

- Lighting equipment checklist
 - Lamps
 - Operating characteristics, lamp size/shape, colour
 - Luminaires
 - Size and shape, light distribution, glare control, ballast
 - Operating environment (e.g. corrosive, dusty)
 - Lighting controls
 - Manual switches, time switches, dimming, daylightlinked controls, occupant sensing

CIE luminaire types and their light distributions Semi-Direct Direct General Diffuse (IES) Direct-Indirect Semi-Indirect Indirect

- Collect information for lighting design
 - Room details:
 - Room size (length, width, height)
 - Horizontal working plane height above floor level
 - Room surface reflectance (ceiling, walls, floor)
 - Window size/s and position
 - Room index
 - $K = (L \times W)/(L + W) H$
 - Cleanliness of the room/environment
 - The regularity of the cleaning

Recommended room reflectances & illuminance ratios [Source: CIBSE Lighting Code]

- Collect information for lighting design (cont'd)
 - Task details:
 - Type of task/application (e.g. office, industrial, retail)
 - Task position (e.g. horizontal/vertical, general/local)
 - Special task lighting requirement (e.g. critical inspection, computer use, disabled persons)
 - Special hazards (e.g. wet or dusty environment, rotating machines) --- luminaire thermal and mechanical protection

- Collect information for lighting design (cont'd)
 - Task lighting requirements:
 - Task illuminance (lux)
 - Task illuminance uniformity (e.g. uniform (0.8), non-uniform (as appropriate))
 - Light colour rendering quality and index (Ra)
 - Average installed power density target (W/m²), to meet building energy code
 - Light pollution, sustainable lighting design

- Collect information for lighting design (cont'd)
 - Room lighting requirements:
 - Accent lighting (e.g. display lighting, decorative lighting)
 - Wall lighting (e.g. display lighting, lighting to create room lightness)
 - Ceiling lighting (e.g. lighting to create room lightness)
 - Light colour appearance (e.g. warm, intermediate, cool)
 - Emergency and/or escape lighting requirement

Typical Calculations

- To calculate the amount of light that will result from a design
 - Critical for commercial & institutional buildings
 - Seldom required for residential design
- Basic considerations
 - Light sources (lamp lumens)
 - Luminaires & light distribution
 - Initial vs. maintained light levels (as lamps age and luminaires get dirty, light level drops)

Typical Calculations

- Design calculations for simple situations
 - The number and layout of luminaires needed for general lighting
 - What additional luminaires are needed to provide local emphasis or accents
 - Energy efficiency of the installation and financial benefits
- Calculation methods:
 - Manual, data sheets/tables, graphical, spreadsheet, computer software

- Determine illuminance level
 - Horizontal (most common)
 - Average illumination on the work plane (lux)
 - Sitting 0.75 to 0.9 m; Standing 0.85 to 1.2m
 - Vertical (e.g. on wall surface)
 - Inclined
- Analyse light distribution
 - Using light distribution curves, illumination and isolux diagrams
 - Illuminance (lux) or luminance (cd/m²)

Light distribution curves, illumination and isolux diagrams*

Light distribution curves

Illumination diagrams

Isolux diagrams

(* See also: http://www.bega.de/en/knowledge/about-light-and-illumination/2-information-about-light-and-illumination/2-06-light-distribution-curves-illumination-and-isolux-diagrams/)

Example: Determination of the luminaire spacing a for pathway illumination of $E_{min} = 1$ lx on the basis of the isolux diagram

(* See also: http://www.bega.de/en/knowledge/about-light-and-illumination/2-information-about-light-and-illumination/2-06-light-distribution-curves-illumination-and-isolux-diagrams/)

Typical Calculations

- Predict general & ambient light levels
 - Rough estimation based on a <u>Watts/sq.m method</u>
 - Not very accurate, but good for prelim. planning
 - <u>Lumen method</u> calculations (light flux method)
 - Determines average illuminance in large open areas
 - Good for general lighting
 - Point-by-point computer calculations
 - Determines light levels at a specific point on an object or surface; complicated, start from fundamental laws
 - Can be used for outdoor lighting

Rough estimation based on a Watts/sq.m method

Average light level desired & typical application	Watts/sq.m of fluorescent, CFL or HID lights	Watts/sq.m of incandescent or halogen lamps
25-50 lux Hotel corridors, stair towers	1-2	3-7
50-100 lux Office corridors, parking garages, theatres (house lights)	2-4	7-10
100-200 lux Building lobbies, waiting areas, malls, hotel function spaces	4-8	10-20
200-500 lux Office areas, classrooms, lecture halls, conference rooms, ambient retail lighting, workshops	15-25	Not recommended
500-1000 lux Grocery stores, laboratories, work areas, big box retail stores	12-20	Not recommended

[Source: Adapted from Karlen and Benya, 2004. Lighting Design Basics]

Typical Calculations

- Predict task lighting & focal lighting levels
 - Difficult to predict accurately
 - Methods commonly used
 - Use data/guide of the luminaire's manufacturer
 - Use the inverse-square law to estimate
 - Use a display lighting software program

• <u>Lumen Method</u>: average illuminance (*E*) is

$$E = \frac{F \times n \times N \times UF \times MF}{A}$$

- F = initial bare lamp luminous flux (lumens)
- n = number of lamps per luminaire
- N = number of luminaires
- *UF* = utilisation factor
- MF = maintenance factor
- $A = \text{area of the surface } (m^2)$

Lumen Method

- Room index (K): a measure of the proportions of the room, for rectangular room
 - $K = (L \times W)/(L + W) h_m$
 - L = length of the room
 - W = width of the room
 - h_m = height of luminaire above horiz. reference plane
- Effective reflectances of ceiling, walls & floor
 - Cavity index (CI) = $(L \times W)/(L + W) h = K \times h_m/h$
 - h = depth of the cavity (ceiling or floor)
 - Determine effective reflectance from tables or formulae (see examples in CIBSE or SLL Lighting Code)

- Utilisation factor (*UF*)
 - Ratio of total flux received by the surface to the total lamp flux of the installation
 - Indicates the effectiveness of the lighting scheme
 - UF depends upon: the efficiency of luminaire, luminaire distribution, geometry of the space, room reflectance, polar curve
 - Usually, UF tables are prepared for general lighting with regular arrays of luminaires, for 3 main room surfaces: ceiling cavity, walls, and floor cavity or horizontal reference plane

Example of luminaire photometric data and utilisation factor

Luminaire type: single 1.5 m, 58 W fluorescent lamp fitting, incorporating a white louvre attachment.

Illustration of luminaire

Luminous Intensity Distributions (polar curves) – axial (A) and transverse (T)

Light output ratio: upward - 0.0; downward - 0.55; total - 0.55.

Spacing/height ratio: nominal - 1.5; maximum (square) - 1.7, maximum (continuous) - 2.0.

Room index	0.75	1.0	1.25	1.5	2.0	2.5	3.0	4.0	5.0
Room reflectances C W F									
70 - 50 - 20	0.36	0.42	0.47	0.51	0.56	0.60	0.63	0.66	0.69
30	0.31	0.36	0.42	0.46	0.52	0.56	0.59	0.63	0.66
10	0.27	0.32	0.37	0.41	0.47	0.52	0.55	0.60	0.63
50 - 50 - 20	0.33	0.38	0.43	0.46	0.51	0.54	0.57	0.60	0.62
30	0.29	0.34	0.38	0.42	0.51	0.51	0.53	0.57	0.59
10	0.25	0.30	0.35	0.38	0.44	0.48	0.50	0.54	0.57
30 - 50 - 20	0.31	0 35	0.39	0.42	0.46	0.49	0.51	0.54	0.55
30	0.27	0.31	0.35	0.38	0.43	0.46	0.48	0.52	0.54
10	0.23	0.28	0.32	0.35	0.40	0.44	0.46	0.50	0.52
0 - 0 - 0	0.20	0.24	0.28	0.30	0.34	0.37	0.39	0.42	0.44

Using the table

Calculate the room index - see section 4, page 15

Decide on the appropriate reflection factors for ceiling (C), walls (W) and floor (F) – see section 4, page 15 Locate utilisation factor at intersection of appropriate column and row

Lumen Method

- Maintenance factor (*MF*)
 - Ratio of maintained illuminance to initial illuminance (losses for lamp lumen maintenance)
 - MF = LLMF x LSF x LMF x RSMF
 - Lamp lumen maintenance factor (LLMF)
 - Lamp survival factor (LSF)
 - Luminaire maintenance factor (LMF)
 - Room surface maintenance factor (RSMF)
 - See CIBSE/SLL Code of Lighting for description

Maintenance factor and light depreciation

Environmental condition	Maintenance factor					
Clean	0.9					
Average	0.8					
Dirty	0.7					

Lumen Method

• The number of luminaires required for a required illuminance level *E* (lux) is:

$$N = \frac{E \times A}{F \times n \times UF \times MF}$$

- Planning the luminaire layout
 - Work out a regular layout of luminaires with an acceptable uniformity
 - Rounding the number found to a whole number that will divide into a regular grid
 - Check on the spacing to height ratio

- Spacing to height ratio (SHR)
 - Ratio of distance between adjacent luminaires (centre to centre) to their height above the working plane

 SHR = $\frac{1}{H_{mN}} \frac{A}{N}$

• where H_m = mounting height; A = total floor area; N = number of luminaires

- Maximum spacing to height ratio (SHR_{max})
 - Luminaire spacing shall not exceed the max. (provided by manufacturer) to ensure uniformity

Lumen Method

- Lumen method: calculation procedure --- a summary
 - Calculate room index K, floor/ceiling cavity index
 - Calculate effective reflectances of ceiling cavity, walls & floor cavity
 - Determine utilisation factor (*UF*) from manufacturer's data, using the room index and effective reflectances
 - Determine maintenance factor (MF)
 - Obtain nos. of luminaires required
 - Determine a suitable layout
 - Check that the geometric mean spacing-to-height ratio
 - Check the layout does not exceed SHR_{max}
 - Calculate illuminance achieved by the final layout

Lumen Method

- Basic assumptions underlying the lumen method
 - Rectangular room
 - Ratio of length to width = 1.6:1, with a max. of 4:1
 - Completely empty room
 - Uniform reflectance and completely diffuse reflection properties of the perimeter surfaces
 - Uniform distribution of luminous flux over all areas
 - Regular luminaire configuration throughout the room
 - In the case of fluorescent lamps, luminaire axis = room axis

- Examples of lumen method calculations:
 - Lighting Design Calculation in a Building Step by Step
 - http://www.electricaltechnology.org/2017/03/lighting-design-calculation-in-building.html
 - Lumen method calculations
 - http://www.arca53.dsl.pipex.com/index_files/lummethd.htm
 - The installer's guide to lighting design, Good Practice Guide 300 (page 22-26)
 - http://www.cibse.org/getmedia/0276ac78-dc41-4694-9378-8f984ef924f2/GPG300-The-Installers-Guide-to-Lighting-Design.pdf.aspx

- Predict direct illuminance at each point on a plane, using measured data of luminous intensity distribution of a source or a luminaire
 - Based on the inverse square law and cosine law
- Three factors must be considered:
 - Luminous intensity
 - Distance
 - Orientation of the surface

Inverse Square Law for lighting calculations

Cosine Law for lighting calculations

COSINE LAW (Illuminance on Tilted Surface)

The Areas A and B are proportional to the lengths of their sides X and Y

$$A/B = Cos(Z)$$

$$B = A / Cos(Z)$$

Illuminace $E_A = F / A$

Illuminace $E_B = F/B = F/(A/Cos(Z)) = F/A * Cos(Z) = E_A * Cos(Z)$

 $E = I/D^2$

when the incident angle is 0 degrees.

The general equation becomes

$$E = I/D^2 * cos (Z)$$

Light Source Intensity = I Candelas $E = I/D^2$

Light Source Intensity = I Candelas

$$\mathbf{E} = \mathbf{I} / \mathbf{D}^2 * \cos(\mathbf{Z})$$

DESK

Cosine Values of Angles

7407 747 747	AND THEFT	Maria San San San San San San San San San Sa													
0	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90
1.000	0.995	0.978	0.951	0.914	0.866	0.809	0.743	0.669	0.588	0.500	0.407	0.309	0.208	0.105	0.000

- Video:
 - Lighting Point by Point (5:08)
 - http://www.youtube.com/watch?v=C8ZKNOvDmCQ
- Limits for using point by point method:
 - Maximum physical dimension of the surface under design is not larger than 1/5th the mounting height above the evaluation point
 - Does not apply to a surface of infinite length

- Computer software can be used to perform numerical point-by-point calculations of direct or reflected light incident on any real surface or imaginary plane
 - The results can be used to predict or quantify the distribution of artificial or natural light in any environment (lighting simulation)
 - Brightness of room surfaces and patterns of light on the ceiling, walls, and floor
 - Also lighting quality & visual performance

- Two calculation techniques when simulating a lighting application
 - Direct Calculation Method
 - A simplified technique when reflected light need not be considered in the results; often used in exterior lighting applications e.g. road and sports lighting
 - It cannot be rendered
 - Full Radiosity Method
 - Accurate computation of interreflected light; for interior lighting applications or when rendering is desired

Two calculation techniques for simulating a lighting application

Direct calculation

Full Radiosity calculation

Lighting calculations and simulation in Revit BIM using ElumTools

(Source: http://www.elumtools.com/)

Using isolines and spatial maps to evaluate the gradient of light across a workplane or surface

(Source: http://www.elumtools.com/)

- Lighting to provide <u>local emphasis</u>
 - Emphasis or accent lighting is used to draw attention to an area or an object, e.g. a reception desk in an entrance area or a display in a shop
 - The amount of light needed to emphasise or draw attention to an object depends on the level of general lighting
 - Ratio of display light to general lighting:
 - 'Subtle' effect --- 5:1
 - 'Moderate' emphasis --- 15:1
 - 'Strong' emphasis --- 30 : 1

- Example: Use spotlight for local emphasis
 - Manufacturers usually provide information in a diagrammatic form showing the effect of a particular spotlamp at various distances
 - Width of the beam and either the illuminance at the beam centre or the average illuminance across the beam
 - Calculate the illuminance from a spotlight or any other small source using the 'point source formula'
 - Wall washing: This uses luminaires that usually have an asymmetric beam shape. The manufacturers usually provide details of the luminaire layout and illuminance performance

Typical performance data for spotlight and wall-washing luminaire

Wall-washing luminaire

- Outdoor area lighting design, such as floodlighting, sports and road lighting
 - Area lighting Design Calculations Part One
 - http://www.electrical-knowhow.com/2013/01/area-lighting-design-calculations-part.html

- Daylighting and daylight factor
 - http://personal.cityu.edu.hk/~bsapplec/methods.htm

Other lighting system related calculations:

Checking for energy efficiency

• Local building/lighting energy efficiency code

Average installed power density (W/m²)

Energy-saving payback calculations

• Demonstrate to a client that the additional cost of installing efficient equipment is worthwhile is by calculating payback period – the length of time before the savings match the extra initial cost

• Payback = (the extra initial cost) / (annual cost savings)

After this period, the user has saved more than he has spent and continues to save money

- Outdoor (or exterior) lighting
 - Floodlighting: flooding a surface with light
 - Achieve illumination on vertical or horizontal surfaces
 - Design issues
 - Appearance during daytime
 - Glare from the installation
 - Decorative lighting
 - Lighting for specific outdoor activities e.g. sports
 - Applications:
 - Building façade, sports, road lighting

Legislative Council Building (now Court of Final Appeal) at daytime and night-time

- Outdoor lighting (cont'd)
 - Floodlighting a building
 - Requires a sense of drama and colour
 - Select locations for putting floodlights & aiming points
 - Peak intensity & beam angle
 - Usually all the beams from each floodlight shall overlap
 - Uniformity ratio (max : average) about 5:1
 - Floodlighting a horizontal open area
 - Use isolux diagram (horizontal illumination plots)
 - Or isocandela and zonal flux diagram
 - Calculate using inverse square law and cosine law

Floodlight Data

Floodlight design data

[Source: Thorn Lighting, UK]

Sample floodlight design for a tennis court

[Source: Thorn Lighting, UK]

[Source: Thorn Lighting, UK]

- e-light: LEARN: the different stages of the lighting design process http://iarc.uncg.edu/elight/learn/learn.html
 - Establish design criteria http://iarc.uncg.edu/elight/learn/establish/est.html
 - Record architectural constraints
 http://iarc.uncg.edu/elight/learn/record/record.html
 - Determine visual functions and tasks http://iarc.uncg.edu/elight/learn/determine/deter.html
 - Design light distribution http://iarc.uncg.edu/elight/learn/design/design.html
 - Qualitative and quantitative results http://iarc.uncg.edu/elight/learn/qualitative/qual.html

- Lighting Design Calculation in a Building –
 Step by Step
 - http://www.electricaltechnology.org/2017/03/light ing-design-calculation-in-building.html
- The installer's guide to lighting design, Good Practice Guide 300
 - http://www.cibse.org/getmedia/0276ac78-dc41-4694-9378-8f984ef924f2/GPG300-The-Installers-Guide-to-Lighting-Design.pdf.aspx

References

- SLL, 2009. *The SLL Lighting Handbook*, Society of Light and Lighting (SLL), Chartered Institution of Building Services Engineers, London.
 - Chapter 6: Lighting design
- Raynham, P., 2012. *The SLL Code for Lighting*, Society of Light and Lighting (SLL), London.
 - Chapter 12: Photometric datasheets
 - Chapter 13: Indoor lighting calculations
 - Chapter 14: Outdoor lighting calculations