SBS5312 Lighting Technology http://ibse.hk/SBS5312/

Light Sources and Systems

Ir. Dr. Sam C. M. Hui Faculty of Science and Technology E-mail: cmhui@vtc.edu.hk

Aug 2018

- Mechanism for production of light radiation:
 - Incandescence
 - Electric discharges
 - Electroluminescence
 - Luminescence
 - Radioluminescence
 - Cathodoluminescence
 - Chemiluminescence
 - Thermoluminescence

Examples of light sources for general lighting (Source: Advanced Lighting Guidelines, <u>www.algonline.org</u>)

- Incandescent filament (I or GLS = general lighting service)
- Tungsten-halogen (TH or H)
- Fluorescent (F)
- High intensity discharge (HID)
 - Metal halide (MH or MBI or M)
 - Mercury vapour (MBF or HPMV or Q)
 - High pressure sodium (HPS or S or SON)
- Low pressure sodium (LPS or LS or SOX)

Light Sources

- Other light sources
 - Induction lamps
 - Light emitting diodes (LEDs)
 - Electroluminscent lamps
 - Lasers
 - Combustion sources
 - Candle flame
 - Gas light (e.g. using kerosene)

(* See also <u>http://en.wikipedia.org/wiki/List_of_light_sources</u>)

- 10 principal families of lamps (according to the manner of light emission) [CIBSE/SLL Lighting Code]
 - 1. Tungsten filament
 - 2. Tungsten halogen
 - 3. Metal halide
 - 4. Low pressure mercury (fluorescent)
 - 5. High pressure mercury
 - 6. Compact fluorescent (CFL)
 - 7. Low pressure sodium
 - 8. High pressure sodium
 - 9. Light emitting diodes (LED)
 - 10. Induction (mercury, sodium & sulphur)

• Advantages

- Low initial cost
- Inexpensive to dim
- High colour rendering
- Can enhance texture
- Disadvantages
 - Lowest efficacy
 - Voltage sensitive
 - Short life
 - Heat generation

Tungsten halogen cycle for incandescent lamp

Tungsten evaporates from filament

Tungsten 🥥 Halogen

Evaporated tungsten reacts with halogen to form tungsten halide Tungsten halide dissociates, tungsten redeposits onto filament

Specification

- Lamp/Bulb shape designations
- Typical filament construction
- Common lamp bases

- Construction
 - Glass envelope
 - Lime glass, borosilicate (hard glass)
 - Fills
 - Vacuum, nitrogen, argon, krypton
 - Coatings
 - Acid etch, silica smoke, ceramic, paint
 - Basing
 - Aluminum, brass, nickel plated brass

- Lamp characteristics
 - Colour temperature
 - Depreciation
 - Mortality
 - Life / lumens / colour / voltage relationships
 - Bulb & socket temperature

Major types of incandescent lamps

- Standard general service (GLS)
- Decorative
- Rough service
- Vibration service
- Sign lamps
- Indicator
- Three way

- Tungsten-halogen lamp, or quartz-halogen lamp (line voltage or low voltage)
 - Advantages
 - Compact size
 - Whiter light
 - Excellent lumen maintenance
 - Longer life
 - Disadvantages
 - More costly

- Advantages
 - High efficiency
 - Super efficacy at high frequency operatio
 - Wide range of colour choices
- Disadvantages
 - Require ballast
 - Temperature sensitivity

• Types of fluorescent lamps

- Linear (tubular)
- Compact
- Circline
- U shape
- Subminiature
- Reflector
- Cold cathode

• Fluorescent lamp identification

- Example: F30T12/CW/RS
 - "F" ... fluorescent
 - "30" ... rated nominal wattage
 - "T" ... tubular shape
 - "12" ... diameter in eighths of an inch; 12/8 = 1.5 in.
 - "CW" ... color; this lamp is a cool white lamp
 - "RS" ... mode of starting; rapid-start lamp

Classification of fluorescent lamps

- Lamp shapes
- Lamp bases
- Coating technology for (double- & tri-) Phosphor
- Lamp characteristics
 - Efficacy (longer the lamp, higher the efficacy)
 - Temperature effects
 - Strobe effect (flicker)
 - High frequency operation

Operating characteristics

- Light output vs. ambient temperature
 - Optimal at 25 °C (highest lumens per lamp)
 - Also affect the colour of the light produced
- Lumen maintenance
 - Initial lumens decrease w/ operating hours
- Effect of starting frequency on lamp life
 - Loss of the electron emissive coasting on electrodes
 - Rated average life = based on 3 hrs operation per start

- Compact fluorescent •
 - Advantages
 - Compact size •
 - High efficacy •
 - High CRI •
 - Long life •
 - Dimmable (some) •
 - High frequency operation •
 - Excellent lumen maintenance •
 - Disadvantages •
 - Position sensitive •
 - Thermal sensitivity •
 - Require ballast •
 - Higher initial cost (over incandescent)

Quad-lamp

F-lamp

Twin-tube

Circline

Oct lamp

2-D

Helical

- Compact fluorescent
 - Types
 - Twin tubes
 - Quads
 - Triples
 - Globes
 - Reflectors
 - Adapter ballasts
 - Self-ballasted

- Compact fluorescent
 - Thermal factor affecting light output & performance
 - Bulb wall temperature
 - Lamp positioning
 - Luminaire design (e.g. ventilation)
 - Plenum temperature
 - Ambient temperature
 - Amalgam temperature
 - Ballasting

- High intensity discharge (HID)
 - Mercury vapour
 - Metal halide
 - High pressure sodium
 - * See example in LampTech website
 - http://www.lamptech.co.uk/

- Mercury vapour
 - Advantages
 - Good for landscape lighting
 - Disadvantages
 - Lowest HID efficacy
 - Poor lumen maintenance
 - Poor colour

• (* historical, use less nowadays)

- Mercury vapour
 - Lamp types
 - Standard, PAR (parabolic), R (reflector), Safety
 - Operating characteristics
 - Starting characteristics
 - Lamp operating position (vertical/horizontal)
 - Lamp life & lumen maintenance
 - Temperature effects
 - Flicker & strobe

- Metal halide
 - Advantages
 - High efficacy
 - Good to excellent colour
 - Good lumen maintenance
 - Wide range of wattages
 - Disadvantages
 - Colour shift
 - Hot restrike time

- Metal halide
 - Lamp types
 - Standard
 - High output
 - PAR (parabolic)
 - Open luminaires
 - Safety
 - Double ended

- Metal halide
 - Operating characteristics
 - Starting characteristics
 - Lamp operating position (vertical/horizontal)
 - Lamp life & lumen maintenance
 - Temperature effects
 - Flicker & strobe

For theatre projection

- High pressure sodium
 - Advantages
 - High efficacy
 - Long life
 - Universal burning position
 - Wide range of wattages
 - Good lumen maintenance
 - Disadvantages
 - Colour (standard lamp)
 - Require ballast
 - Cycling (standard lamp)

- High pressure sodium
 - Lamp types
 - Standard
 - Standby/instant restrike
 - High output
 - Non-cycling
 - Deluxe colour
 - Double ended
 - Self-ballasted
 - Mercury retrofit
 - Operating characteristics
 - Starting characteristics
 - Lamp operating position (vertical/horizontal)
 - Lamp life & lumen maintenance
 - Temperature effects
 - Cycling

Low Pressure Sodium

- Low pressure sodium
 - Advantages
 - Highest efficacy
 - Hot restrike
 - Disadvantages
 - Monchromatic
 - Optical control
 - Lamp disposal
 - Increased wattage over life

Induction Lamps

- They are gas discharge lamps that do not have electrodes
- The electric field in the lamp is induced by an induction coil that is operating at high frequency

Induction lamps based on fluorescent lamp technology

- Light emitting diode (LED)
 - Produces light by electroluminescence at low voltage "p-n" junction (e.g. indicator lights)
 - Development of white light & high output LEDs enables wider use in lighting systems

(* See How LED Works, http://www.omslighting.com/ledacademy/)

Examples of LED lamp application

• Light emitting diode (LED)

- Advantages
 - Low power consumption
 - Long lasting (long useful life)
 - Durable (withstand impact & vibration)
 - Cool (little heat produced)
 - Modular design & compact size
 - Controllability (colour balance & intensity)
 - Instant on, frequent switching
 - No annoying flicker
 - Low cost of manufacture
 - No ultraviolet & infrared radiation
 - Mercury free

LED candles

- Disadvantages
 - Focused, directional light
 - Need different optics design
 - May need heat sink (thermal management)

- Solid state lighting (SSL)
 - Emits light from semi-conductor (solid)
 - Light emitting diode (LED)
 - Organic light-emitting diodes (OLED)
 - Polymer light-emitting diodes (PLED)
 - Advantages:
 - Low power consumption
 - Reduced heat generation
 - Greater resistance to shock, vibration, and wear
 - LED retrofits (not ideal), versus LED luminaires

• Video: LEDs and OLEDs - How it Works, Inventors (7:18)

- http://www.youtube.com/watch?v=8quZrUcRFlw
- All about Light Emitting Diodes and Organic LEDs. How they work, the difference between them.
- Learn about the inventors of the lights at the end of the program.

Ballasts

(* See also http://en.wikipedia.org/wiki/Electrical_ballast)

- Ballasts* (e.g. electromagnetic and electronic ballasts)
 - For operation of gas discharge lamps (e.g. fluorescent, HID)
 - Provide several functions:
 - Deliver proper voltage to start or ignite the lamp(s)
 - Current limiting (to safely sustain operation)
 - Compensate for variations in line voltage
 - May offer electrode preheat, dimming or power quality adjustment
 - Consume power & reduce overall lumens per watt rating
 - Ballast factor (BF) (range from 0.7 to 1.2)
 - It is a measure of actual lumen output for a specific *lamp-ballast* system relative to the rated lumen output measured with a reference ballast under test conditions

Ballasts

- Ballast efficacy factor (BEF)
 - = Ballast factor (BF) x 100 / Input Watts
- Harmonics caused by electronic ballasts
 - Switching techniques in solid-state electronic ballasts may cause line current harmonics
 - Total harmonic distortion (THD)
 - Distorted wave from superimposing harmonic sine waves (multiples of the fundamental)
 - Consequences of harmonics:
 - Contribute to resistive heating in wiring, insulation, etc
 - Cause lower power factors
 - Produce overheating in transformers
 - Cause excessive current in neutral conductor

- Luminaire (light fixture)
 - A complete lighting system:
 - A housing and lampholders
 - Lamps (w/ a ballast/transformer)
 - Optical system
 - Reflector, and either a lens, louver or diffuser
 - For controlling brightness
 - It may also include some type of electrical control dimmers, hilo switching, daylight sensors, etc.

- Six basic classifications of luminaires:
 - <u>Direct</u> luminaire where all the light is directed down
 - <u>Semi-direct</u> luminaire where the majority of the light is directed down
 - <u>General diffuse</u> luminaire where light is distributed in all directions
 - <u>Direct-indirect</u> luminaire where light is distributed equally up and down
 - <u>Semi-indirect</u> luminaire where the majority of light is directed up
 - <u>Indirect</u> luminaire where all the light is directed up

- Optical systems
 - Typical methods of controlling light
 - Reflection
 - Specular, diffuse, spread, selective
 - Transmission
 - Direct, diffuse, spread, selective
 - Refraction

REFLECTORS ELLIPTICAL

COMPOUND

Fig. 3.5 Refraction and total internal reflection.

Methods of controlling light (Source: IESNA Handbook 9th ed.)

- Luminaries Efficacy Rating (LER)
 - LER = (Photometric Efficiency x Total Lamp Lumens x Ballast factor) / Luminaire Input Watts
- How to classify fluorescent luminaires & systems
 - Mounting: recessed, surface (ceiling or wall) & suspended
 - Distribution: direct, indirect, direct/indirect
 - Type of fluorescent lamp: T12, T8, T5
 - Nominal dimensions: 1 x 4, 2 x 4, etc
 - Application: commercial, industrial, residential, special purpose

Further Reading

- The Electric Light (Edison Tech Center) http://www.edisontechcenter.org/Lighting.html
 - Incandescent Lamps <u>http://www.edisontechcenter.org/incandescent.html</u>
 - The Fluorescent Lamp http://www.edisontechcenter.org/Fluorescent.html
 - Mercury Vapor Lamps <u>http://www.edisontechcenter.org/MercuryVaporLamps.html</u>
 - Metal Halide Lamps http://www.edisontechcenter.org/metalhalide.html
 - Sodium Lamp http://www.edisontechcenter.org/SodiumLamps.html
 - LEDs and OLEDs http://www.edisontechcenter.org/LED.html

Further Reading

- SLL, 2009. *The SLL Lighting Handbook*, Society of Light and Lighting (SLL), Chartered Institution of Building Services Engineers, London.
 - Chapter 3: Light sources
 - Chapter 4: Luminaires
 - Chapter 5: Electrics