SBS5312 Lighting Technology

http://ibse.hk/SBS5312/

Tutorial Exercise 01 - Lighting and Daylighting Calculations

1. A general area requires a lighting level of 500 lux from a regular array of louvred luminaries. Given the following data calculate the number of luminaries required and arrange a suitable layout.

Room dimensions are: length 8 m , width 8 m , height 2.8 m
Room reflectances: ceiling 0.7 , walls 0.5 , working plane cavity 0.2
Working plane height $=0.8 \mathrm{~m}$

Utilisation Factor $(U F)$ table for $0.7,0.5,0.2$ reflectances $(R I=$ room index $)$								
$R I=$	1.00	1.25	1.50	2.00	2.50	3.00	4.00	5.00
$U F=$	0.45	0.50	0.53	0.58	0.61	0.63	0.66	0.67

Maintenance factor $=0.75$
Maximum space to height ratio $=1.75$
Luminaire versions available:
$2 \times 1800 \mathrm{~mm} 70 \mathrm{~W}$ (each lamp gives) 6550 lumens
$2 \times 1500 \mathrm{~mm} 58 \mathrm{~W}$ (each lamp gives) 5400 lumens
$2 \times 1200 \mathrm{~mm} 36 \mathrm{~W}$ (each lamp gives) 3450 lumens
[Ans.: $R I=2.0, U F=0.58,9$ luminaries, layout 3 by 3]
2. A laboratory has dimensions 9 m (depth) x 9 m (width) x 3.4 m (height) and one single-glazed window of 4 m (width) $\times 2.5 \mathrm{~m}$ (height) on the exterior wall. The angle of sky component is 60 degrees, the maintenance factor is 0.75 and the reflection factor is 0.7 . Determine the average daylight factor of this room.

Given: $\quad D F=\frac{T \times G \times \theta \times M F}{A \times\left(1-R^{2}\right)}$
where $\quad D F=$ average daylight factor (\%)
$T=$ light transmittance (assume 0.85 for clear single glazing)
$G=$ glazed window area $\left(\mathrm{m}^{2}\right)$
$\theta \quad=$ angle of sky component (degree)
$M F=$ maintenance factor
$A=$ total area of interior surfaces including windows $\left(\mathrm{m}^{2}\right)$
$R \quad=$ reflection factor
If the window is changed to one double-glazed window (light transmittance is 0.5) of 5 m (width) $\times 2.4 \mathrm{~m}$ (height), what would the average daylight factor be?
[Ans.: $D F=2.64 \%$, when the window is changed to double-glazed $D F=1.86 \%$]

