Tutorial Exercise 01 - Lighting Calculations (Solutions)

1. A general area requires a lighting level of 500 lux from a regular array of louvred luminaries. Given the following data calculate the number of luminaries required and arrange a suitable layout.

Room dimensions are: length 8 m , width 8 m , height 2.8 m
Room reflectances: ceiling 0.7 , walls 0.5 , working plane cavity 0.2
Working plane height $=0.8 \mathrm{~m}$

Utilisation Factor $(U F)$ table for 0.7, 0.5, 0.2 reflectances $(R I=$ room index $)$								
$R I=$	1.00	1.25	1.50	2.00	2.50	3.00	4.00	5.00
$U F=$	0.45	0.50	0.53	0.58	0.61	0.63	0.66	0.67

Maintenance factor $=0.75$
Maximum space to height ratio $=1.75$
Luminaire versions available:
$2 \times 1800 \mathrm{~mm} 70 \mathrm{~W}$ (each lamp gives) 6550 lumens $2 \times 1500 \mathrm{~mm} 58 \mathrm{~W}$ (each lamp gives) 5400 lumens $2 \times 1200 \mathrm{~mm} 36 \mathrm{~W}$ (each lamp gives) 3450 lumens
[Ans.: $R I=2.0, U F=0.58,9$ luminaries, layout 3 by 3]
Answer:
(i) Calculate room index and obtain UF value: with a working plane height of $0.8 \mathrm{~m}, h_{m}=$ $2.8-0.8=2 \mathrm{~m}$; so $\mathrm{RI}=\mathrm{L} \times \mathrm{W} / h_{m}(\mathrm{~L}+\mathrm{W})=8 \times 8 / 2(8+8)=\underline{\mathbf{2}} . \quad$ From table, $\underline{\mathbf{U F}=}$ $\underline{\mathbf{0 . 5 8}}$; $\mathrm{MF}=0.75$ (given).
(ii) Calculate the total lumens required: Using the lumen method formula:
$\mathrm{E}=\mathrm{FxnxUF} \times \mathrm{MF} / \mathrm{A}$
$\mathrm{F} \times \mathrm{n}=\mathrm{ExA} /(\mathrm{UF} \times \mathrm{MF})=500 \times 8 \times 8 /(0.58 \times 0.75)=73,563$ lumens
(iii) Calculate the number of luminaires:

The minimum number of luminaires will give the minimum number of electrical points and so the largest lamp size should be tried first. There are 2 lamps per luminaire: two 70 W lamps give 2×6550 lumens $=13,100$ lumens. Therefore, $n=73,563 / 13,100=5.6$ luminaires. This would be rounded up to 6 luminaires arranged in two rows of three. Will the spacing for two rows exceed the maximum specified by the manufacturer?

Width of office $=8 \mathrm{~m}$, spacing between rows 4 m with 2 m to the wall at each side. The maximum spacing/mounting height ratio from the manufacturer is $S / h_{m}=1.75$. If $h_{m}=2$ m , so allowable spacing is $S=1.75 \times 2=3.5 \mathrm{~m}$. It is necessary to have 9 luminaires in 3 rows to provide acceptable uniformity.

Recalculate lamp output $=73,563 /(9 \times 2)=4,087$ lumens
The only available lamp size that will provide 500 lux or more is the 58 W lamp giving 5,400 lumens. This solution will give a higher illuminance than that specified, but this is a common outcome and has to be accepted. The new illuminance value is $=5,400 \times 18 \mathrm{x}$ $0.58 \times 0.75 / 64=660$ lux.

The spacing for 9 luminaires would be $8 / 3=2.7 \mathrm{~m}$ with 1.3 m at the walls. $S / h_{m}=2.7 / 2=$ 1.35 , which is well within the 1.75 limit. The luminiare layout is shown below. Please note that the room shape, uniformity requirements and the available luminaire/lamp
combinations may dictate solutions that give a higher performance than the minimum recommendations.

2. A laboratory has dimensions 9 m (depth) x 9 m (width) x 3.4 m (height) and one single-glazed window of 4 m (width) $\times 2.5 \mathrm{~m}$ (height) on the exterior wall. The angle of sky component is 60 degrees, the maintenance factor is 0.75 and the reflection factor is 0.7 . Determine the average daylight factor of this room.

Given: $\quad D F=\frac{T \times G \times \theta \times M F}{A \times\left(1-R^{2}\right)}$
where $\quad D F=$ average daylight factor (\%)
$T=$ light transmittance (assume 0.85 for clear single glazing)
$G=$ glazed window area $\left(\mathrm{m}^{2}\right)$
$\theta \quad=$ angle of sky component (degree)
$M F=$ maintenance factor
$A=$ total area of interior surfaces including windows $\left(\mathrm{m}^{2}\right)$
$R \quad=$ reflection factor
If the window is changed to one double-glazed window (light transmittance is 0.5) of 5 m (width) $\times 2.4 \mathrm{~m}$ (height), what would the average daylight factor be?
[Ans.: $D F=2.64 \%$, when the window is changed to double-glazed $D F=1.86 \%$]
Answer:
(i) Total area of interior surfaces $=[(9 \mathrm{x} 9)+(9 \mathrm{x} 3.4)+(9 \mathrm{x} 3.4)] \times 2=284.4 \mathrm{~m}^{2}$

Average daylight factor of this room:

$$
D F=[0.85 \times(4 \times 2.5) \times 60 \times 0.75] /\left[284.4 \times\left(1-0.7^{2}\right)\right]=\underline{\mathbf{2 . 6 4 \%}}
$$

(ii) If the window is changed to one double-glazed window (light transmittance is 0.5) of 5 m (width) $\times 2.4 \mathrm{~m}$ (height), the average daylight factor is:

$$
D F=[0.5 \times(5 \times 2.4) \times 60 \times 0.75] /\left[284.4 \times\left(1-0.7^{2}\right)\right]=\underline{\mathbf{1 . 8 6} \%}
$$

