#### SBS5413 Building Sustainability & Green Building Assessment http://ibse.hk/SBS5413/



# Building greening and green roof systems



Ir. Dr. Sam C. M. Hui Faculty of Science and Technology E-mail: cmhui@vtc.edu.hk

Jan 2018

# Contents



- Building greening
- What are green roofs?
- Major types of green roofs
- Key components
- Benefits of green roofs
- Design considerations



# **Building greening**



- Greening in a building may be in various approaches, forms, extent and locations
  - Landscape at ground level, on roof, in sky garden, on podium, on vertical surface or on building façade
- Building greening can improve city liveability:
  - Urban living condition, ecology, energy saving, quality of living
  - It is closely related to sustainability of the city

(See also: Introductory Guide on Greening in Buildings http://www.bd.gov.hk/english/documents/pamphlet/IGG\_e.pdf)

### Common types of building greening



(Source: Introductory Guide on Greening in Buildings http://www.bd.gov.hk/english/documents/pamphlet/IGG\_e.pdf)

# Collapse of green roof in Hong Kong (20 May 2016)



(Comments on CityU green roof incident by Dr. Sam C. M. Hui: 講清講楚 (On the Record - TVB iNews) 2016-05-29 http://news.tvb.com/programmes/ontherecord/574acbb46db28c8e75000000)

(Image source: <u>http://hk.apple.nextmedia.com</u>)

# **Building greening**



# • Skyrise greenery 天際綠化

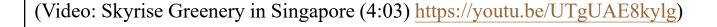
- Greening at the buildings or other structures beyond the ground level, such as
  - Roof greening (horizontal or inclined)
  - Vertical greening
  - Sky gardens, podium gardens
  - Terrace and balcony planting
  - Edge greenery
- Multi-level greening
- History
  - Hanging gardens of Babylon (600 B.C.)

(Ref: Skyrise Greenery http://www.greening.gov.hk/en/green\_technologies/skyrise.html)

# The Hanging Gardens of Babylon (an ancient wonder of the world)





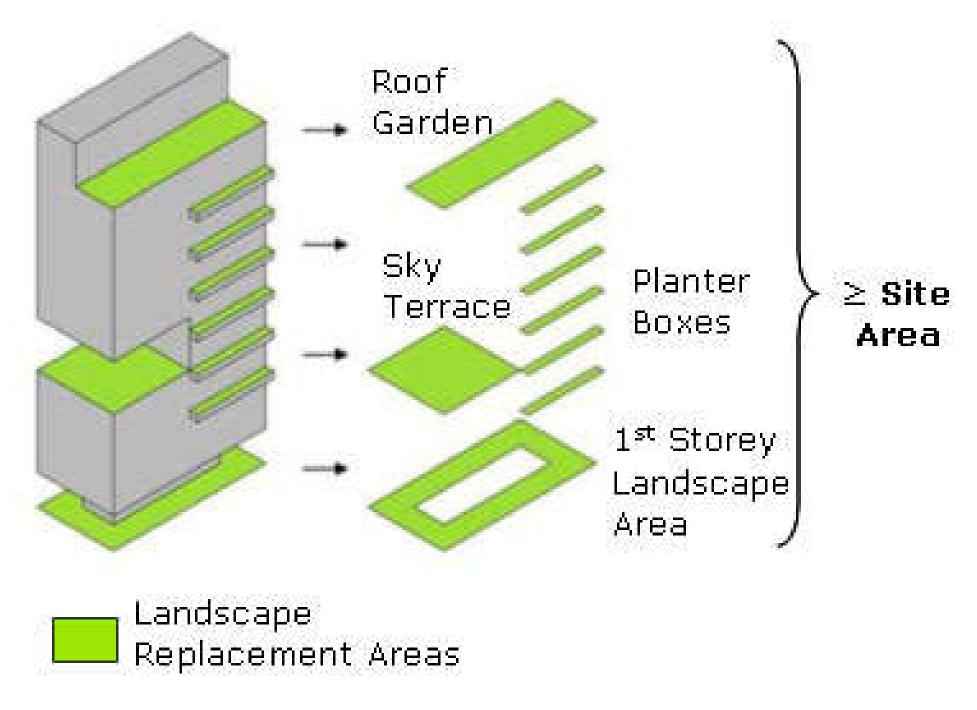

(Video: Gift for a Queen - Hanging Gardens of Babylon (2:44) <u>http://youtu.be/Kfg1YE-BqTc</u>)

(Source: <u>http://weburbanist.com</u>; see also <u>http://en.wikipedia.org/wiki/Hanging\_Gardens\_of\_Babylon</u>)

# **Building greening**

# • Skyrise greenery in modern world

- High-density urban cities
- Highrise buildings and concrete jungle
- Limited space for greening & relaxing
- Greenery in urban landscape
  - Make good use of existing spaces in urban areas
  - Integrate nature into our urban development
  - Create urbanscapes that are dynamic in more environmental and sustainable ways










### Types of landscape areas from skyrise greenery



(Source: Urban Redevelopment Authority, Singapore, http://www.ura.gov.sg/uol/circulars/2009/apr/dc09-09)

# What are green roofs?



- Green Roofs: roofs bearing vegetation –FLL\*
  - "Living vegetation installed on the roofs"
  - "Vegetated roof" 植被屋頂
- Green Roof System Definition 屋頂綠化系統
  - "A roof area of plantings/landscape installed above a waterproofed substrate at any building level that is separated from the ground beneath it by a man-made structure." – NRCA Green Roof System Manual 2007 生態屋頂,活生屋頂
- Other green roof terms: Eco-roof, Living roof

\* FLL = Research Society for Landscape Development and Landscape Design (Forschungsgesellschaft Landschaftsentwicklung Land-schaftsbau e.V.) (www.fll.de)

### Examples of green roofs in the world



Solar Campus Jülich, Germany (11 Jul 2001)



Putrajava Int. Conven. Centre, Malaysia (30 Jun 2006)



IBN-DLO Wageningen, the Netherlands (2 Jul 2001)



Beitou Taipei Library, Taiwan (6 Aug 2007)

(Photos taken by Dr Sam C M Hui)



ACROS Fukuoka Prefectural International Hall, Fukuoka, Japan (Source: www.greenroofs.com)



Bukit Panjang Sports Hall, Singapore (Source: www.skyrisegreenery.com)



Library Square Building in downtown Vancouver, BC, Canada (Source: http://urbangreens.tumblr.com)



Marina Barrage, Singapore (14,000 m<sup>2</sup>) (Source: www.skyrisegreenery.com)

### Examples of green roofs in Hong Kong



# Ocean Park Hong Kong



Parklane, Tsimshatsui



### **EMSD** Headquarters



A school in San Po Kwong

(Photos taken by Dr Sam C M Hui)

# Hong Kong Wetland Park Phases II (the largest green roof in Hong Kong)



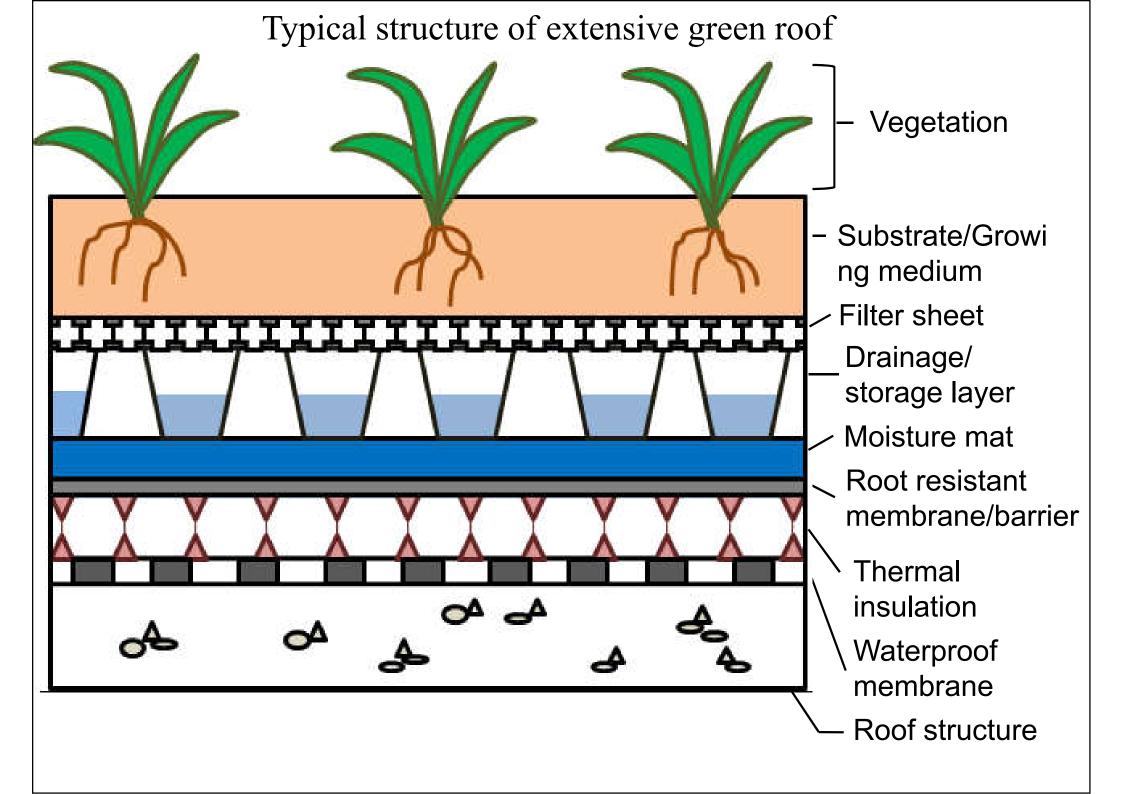
(Source: Architectural Services Department)

#### Another type of "green roof" in Hong Kong?!





# Major types of green roofs


- Major types of green roofs (see Table 1)\*
  - Extensive
  - Semi-intensive
  - Intensive

\* Could also be combined as hybrid types

- <u>Roof gardens</u>: usually intensive greening with other features such as potted plants, pond, etc.
  - Examples in HK: podium gardens, sky gardens
- Classify green roof systems by basic design:
  - Built-in green roofs vs Modular green roofs

# Table 1. Major types of green roofs and their characteristics

| Characteristics        | Extensive                          | Semi-intensive                         | Intensive                            |
|------------------------|------------------------------------|----------------------------------------|--------------------------------------|
| Depth of<br>material   | 150 mm or less                     | Above and below 150 mm                 | More than 150 mm                     |
| Accessibility          | Often inaccessible                 | May be partially accessible            | Usually accessible                   |
| Fully saturated weight | Low (70-170<br>kg/m <sup>2</sup> ) | Varies (170-290<br>kg/m <sup>2</sup> ) | High (290-970<br>kg/m <sup>2</sup> ) |
| Plant diversity        | Low                                | Greater                                | Greatest                             |
| Plant<br>communities   | Moss-sedum-herbs and grasses       | Grass-herbs and shrubs                 | Lawn or perennials, shrubs and trees |
| Use                    | Ecological protection layer        | Designed green roof                    | Park like garden                     |
| Cost                   | Low                                | Varies                                 | Highest                              |
| Maintenance            | Minimal                            | Varies                                 | Highest                              |





# Major types of green roofs

# • Built-in green roofs

- Installed in layers for the roof surface
- More complex and permanent
- Time needed for on-site installation & growing
- Excess weight (180 to 450 kg/m<sup>2</sup>)
- Complexity of maintenance
- Modular green roofs
  - Prefabricated off-site, pre-grown, with modular design
  - Sub-divided into standard interchangeable parts



### Examples of green roofs in Singapore



Carpark roof of public housing (modular green roof)





Carpark roof of housing estate (built-in green roof)



Carpark roof of public housing (intensive green roof) Lawn green roof (Nanyang Techn. Univ.) (Photos taken by Dr Sam C M Hui, 29 May & 1 Jun 2009)



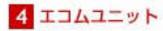
#### Vegetated mat system (www.elteasygreen.com)




### Tray system (www.liveroof.com)



Sack system (www.greenpaks.com)


### Construction process of modular green roofs

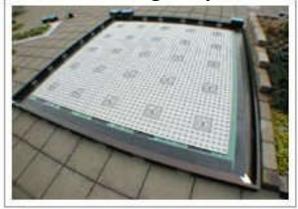
#### Gウェイブ エコム 施工の流れ (#業工程)



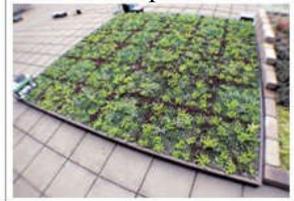
1 防水層施工直後 Install modules

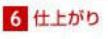





(Source: www.tajima-roof.jp)




2 IDLF-J Fix modules (if needed)


5 FDワッシャー

Drainage layer

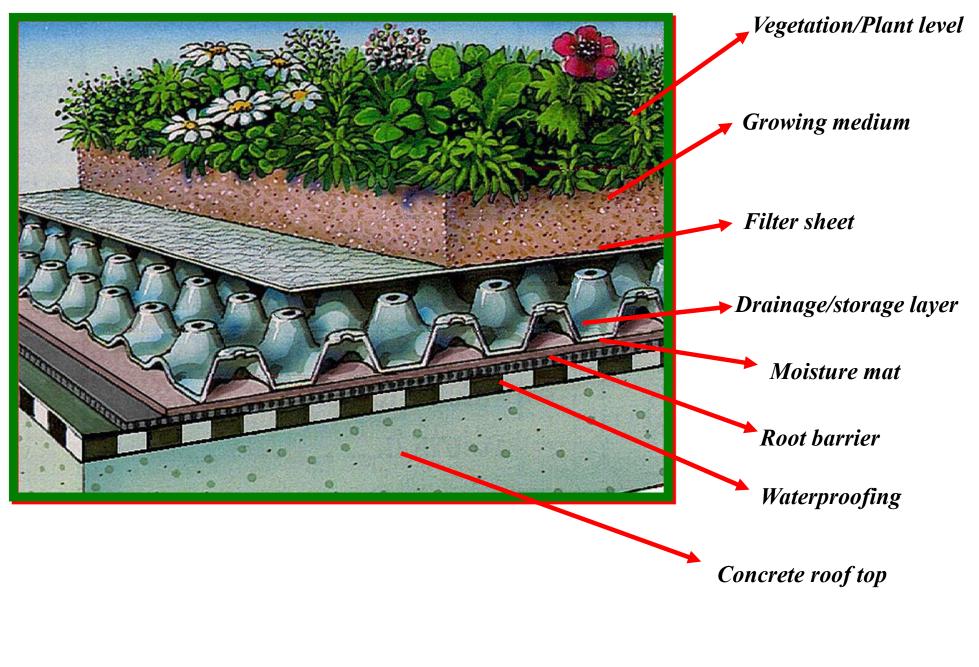


3 FDドレインEN FDウォール80E Completed





# **Key components**


• Typically components of green roofs:

- Vegetation (plants)
- Growing medium or soil (substrate)
- Filter sheet (geotextile fabric)
- Drainage/storage layer
- Moisture mat
- Root repellant layer
- Waterproof layer

### Green roof systems from Germany (left) and Japan (right)



# Green Roof Structure



(Source: www.zinco.de)

### Green roof on steel deck structure



(Source: www.alumasc-exteriors.co.uk)

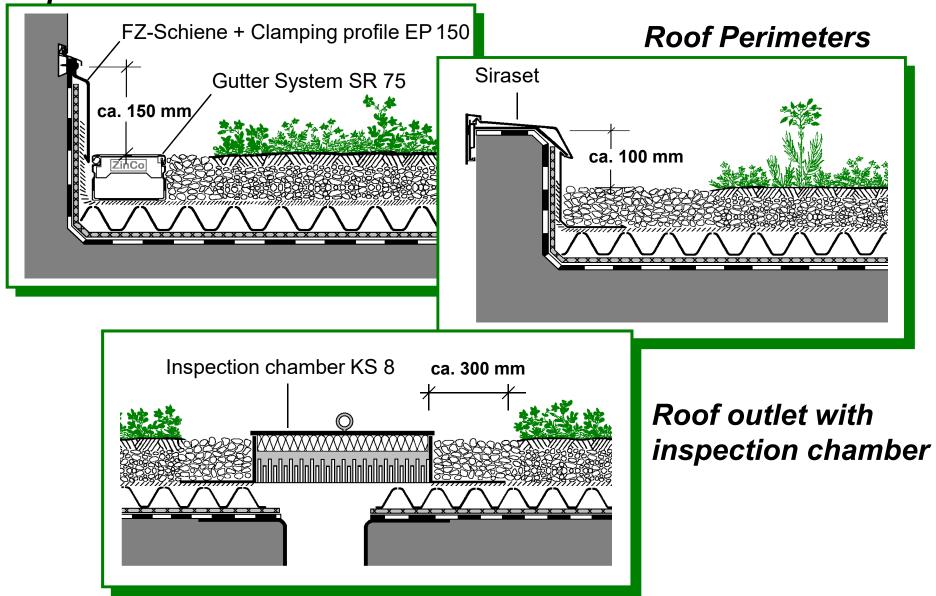
### Green roof on concrete structure



(Source: www.alumasc-exteriors.co.uk)

# **Key components**

- Other components of green roofs:
  - Insulation
  - Membrane protection layer
  - Leak detection system
  - Ponds and pools
  - Irrigation system
  - Walkways
  - Curbs and borders
  - Railings
  - Lighting






(Source: www.tajima-roof.jp)

### Examples of green roof details





(Source: www.zinco.de)



# Benefits of green roofs

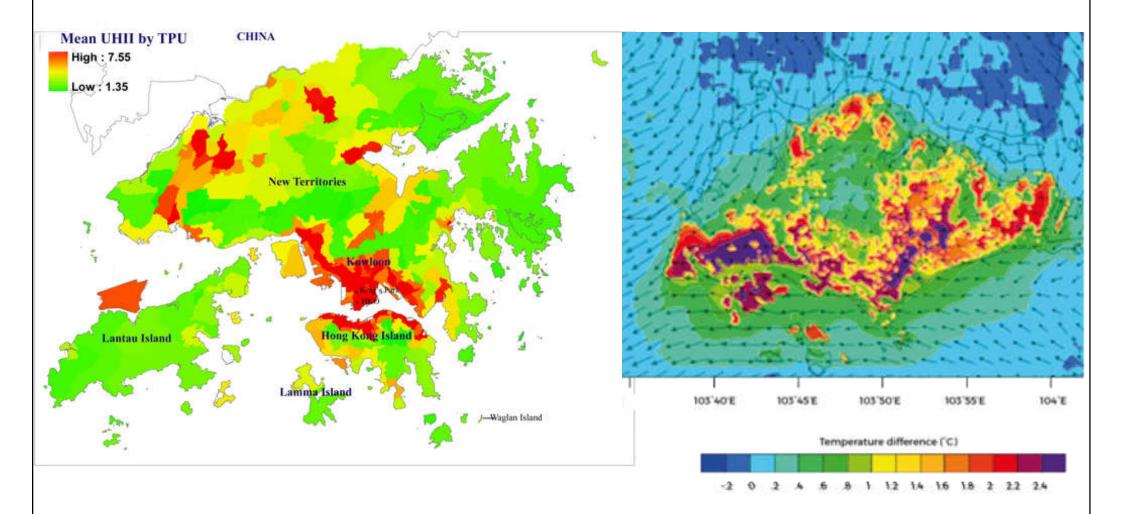
- Green roofs provide many benefits to the society (public) and building owners (private)
  - 1. Environmental benefits
  - 2. Economic benefits
  - 3. Social and aesthetic benefits
- Important considerations:



• Some benefits are common to all green roofs, but many are project design specific; some benefits will be apparent if roof greening is on a large scale Table 2. Public and private benefits of green roof systems

| Public benefits:             | Private benefits:              |  |
|------------------------------|--------------------------------|--|
| - Aesthetic value            | - Increase roof life span      |  |
| - Mitigate urban heat island | - Reduce cooling loads         |  |
| - Stormwater retention       | - Contribute to green building |  |
| - Create natural habitat     | rating credit points           |  |
| - Functional open space      | - Better use of space          |  |
| - Agricultural space         | - Reduce noise levels          |  |
| - Filter dust and pollutants | - Reduce risk of glare for     |  |
| - Filter rainwater           | surrounding buildings          |  |




# Benefits of green roofs

# • 1. Environmental benefits:

- Mitigate urban heat island
- Improve air quality
- Stormwater management
- Create natural habitat
- Increase biodiversity
- Insulate and absorb sound
- Possible urban farming



### Urban heat island effects in Hong Kong and Singapore

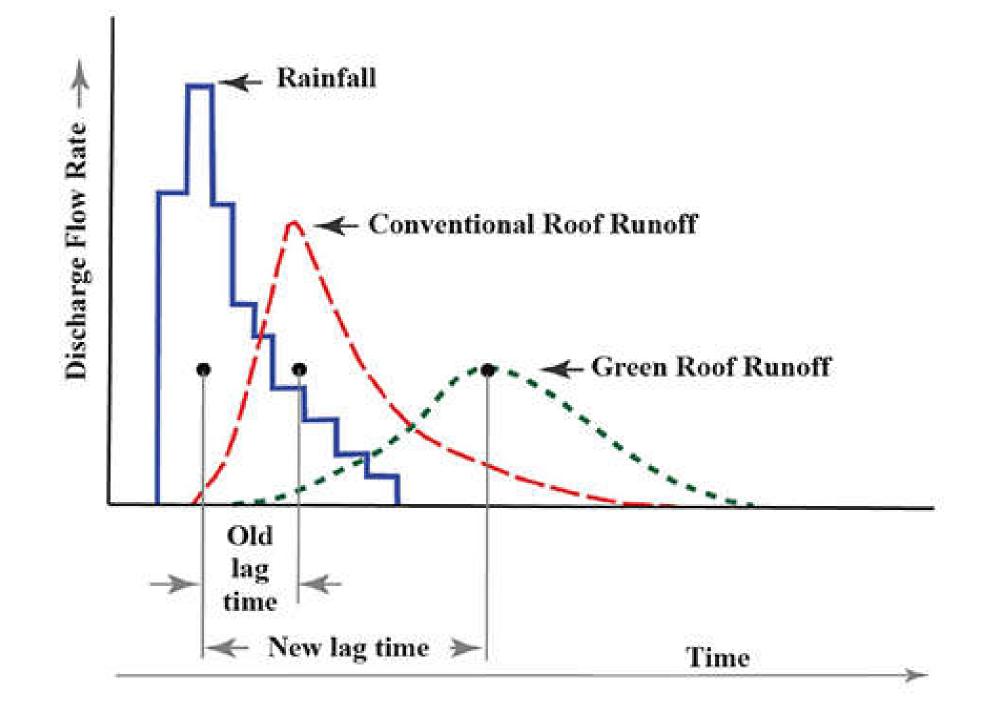


(Source: Goggins WB, Chan EYY, Ng E, Ren C, Chen L (2012) Effect Modification of the Association between Short-term Meteorological Factors and Mortality by Urban Heat Islands in Hong Kong. PLOS ONE 7(6): e38551. http://doi.org/10.1371/journal.pone.0038551SCMP and Hong Kong Observatory and <a href="http://www.coolingsingapore.sg/uhi-singapore/">http://doi.org/10.1371/journal.pone.0038551SCMP</a> and Hong Kong Observatory and <a href="http://www.coolingsingapore.sg/uhi-singapore/">http://www.coolingsingapore.sg/uhi-singapore/</a>)





### **GREEN ROOF**






# Benefits of green roofs

- Effects of green roofs on water runoff
  - Water can be absorbed into pore spaces in the substrate or taken up by the absorbent materials
  - Water taken up by the plants (stored in plant tissues or transpired back to the atmosphere); lodged on plant surfaces & evaporate away ('*evapo-transpiration*')
  - Water stored and retained by drainage system
- Reduce actual runoff and act as a buffer (mitigate peak flow, during summer storms)

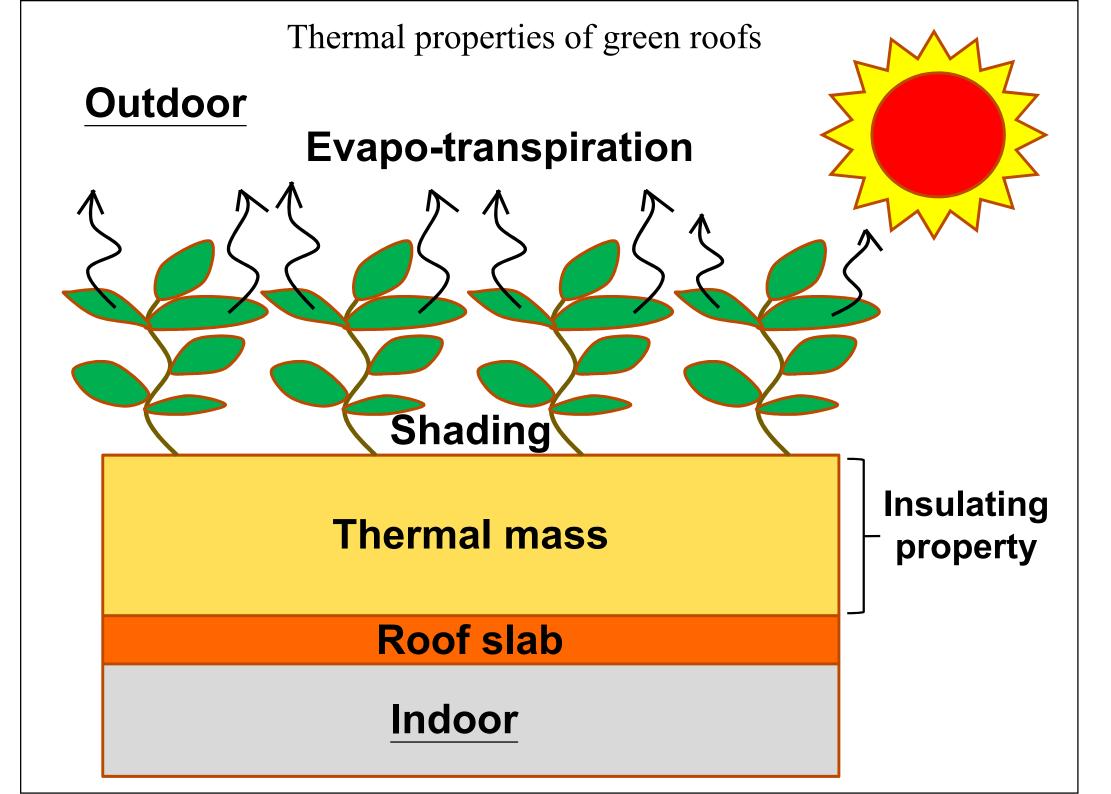
Typical rainfall and runoff hydrographs for conventional and green roofs



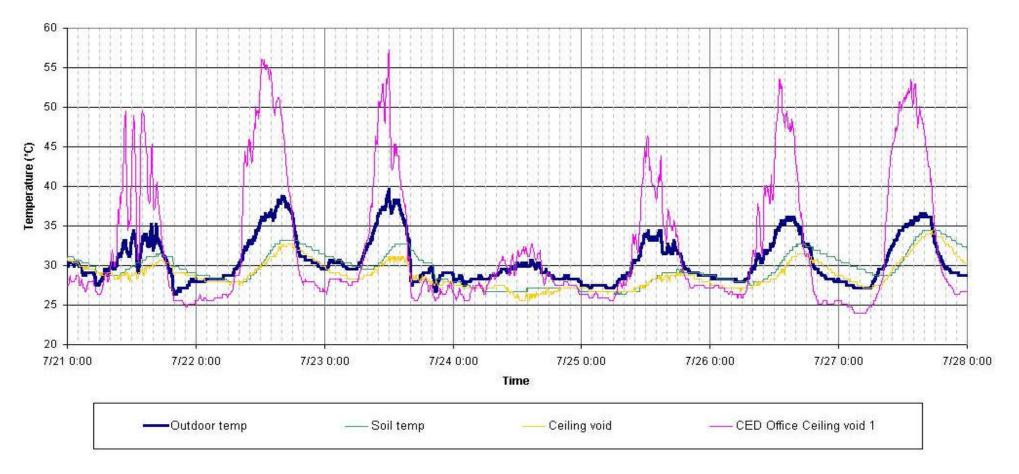
(Source: http://extensionpublications.unl.edu/assets/html/g2244/build/g2244.htm)



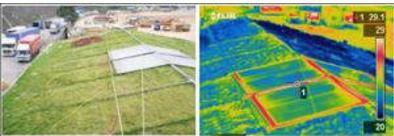
- 2. <u>Economic benefits</u>:
  - Improve roof durability
  - Increase roof material lifetime
  - Reduce building cooling load and energy costs
  - Provide open space & increase property value
  - Attracts buyers and tenants
  - Attracts and retains employees
  - Green building credit points & image



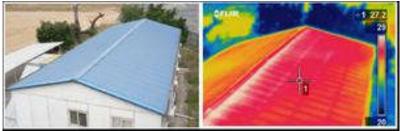




- 2.1 Increased roof life
  - Exposed roofs
    - Experience higher temperature than that of green roofs
    - Daily temperature fluctuations create thermal stresses
    - Roofing materials & membranes are degraded
  - Green roofs
    - Moderate the daily temperature fluctuations
    - Protect the roof system from heat, UV radiation & other mechanical damages: the roof will last longer




- 2.2 Cooling, insulation and energy efficiency
  - Thermal properties of green roofs
    - Direct shading of the roof
    - Evaporative cooling from the plants & substrate
    - Additional insulation from the plants & substrate
    - Thermal mass effects of the growing medium
  - Summer reduction in cooling energy requirements
    - Possible winter insulation effect
  - To maximize the cooling potential, a healthy & complete plant cover is important




### Green roof research at a construction site office in Hong Kong

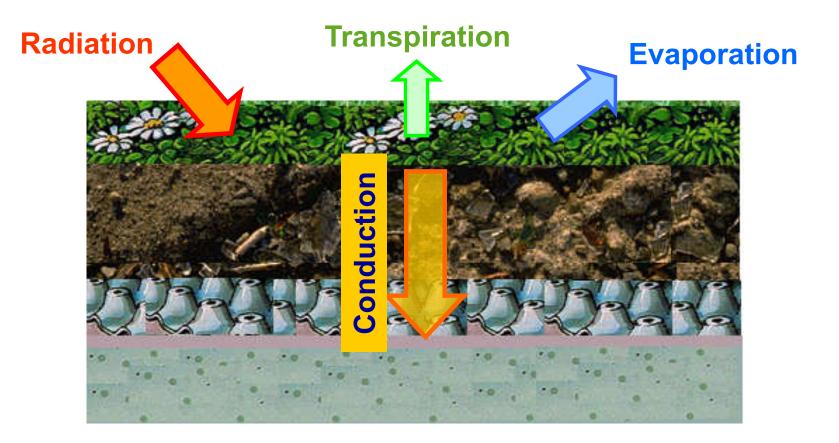


#### Infrared pictures:



### Green roof




Conventional roof

#### Heat and mass transfer equations for green roof

Heat and mass transfer in the structural material (a) Heat transfer:  $\frac{dT}{dt} = a_c \frac{\partial^2 T}{\partial z^2} + \frac{\varepsilon \lambda}{c} \frac{\partial q_c}{\partial t}$ (b) Mass transfer:  $\frac{dq_c}{dt} = \alpha_m \frac{\partial^2 q_c}{\partial \sigma^2}$ Heat and mass transfer in the air (a) Heat transfer:  $\frac{dT}{dt} = \alpha_a \frac{\partial^2 T}{\partial z^2} + \frac{(h_a - h_b)}{c_{aa} \rho_a} I_1 - \left(\frac{c_1 - c_2}{c_a}\right) \left(D \frac{\partial q_a}{\partial z} \frac{\partial T}{\partial z}\right)$ (b) Mass transfer:  $\frac{dq_a}{dt} = D \frac{\partial^2 q_a}{\partial z^2} + \frac{1}{\rho_a} I_1$ Heat and mass transfer in the soil (a) Heat conduction:  $\frac{dT}{dt} = \frac{1}{\rho_{c}c_{c}} \frac{\partial}{\partial z} \left( K_{s} \frac{\partial T}{\partial z} \right)$ (b) Mass transfer:  $\frac{d\omega_g}{dt} = \frac{\partial}{\partial z} \left( K_g \left( \frac{\partial \psi_p}{\partial z} + 1 \right) \right) = \frac{\partial}{\partial z} \left( D_g \frac{\partial \omega_g}{\partial z} + K_g \right)$ Heat and mass transfer in the canopy (a) Air temperature:  $\frac{dT_a}{dt} = \alpha_a \frac{d^2 T_a}{dz^2} + \frac{1}{r_{aH}} \frac{\partial T}{\partial x} \Big|_1 - \frac{c_1 - c_2}{c_{ra}} D_a \frac{\partial q_a}{\partial z} \frac{\partial T_a}{\partial z} \Big|_a$ (b) Vapour diffusion:  $\frac{dq_a}{dt} = D_a \frac{d^2 q_a}{dz^2} + \frac{1}{r_s + r_s} \left( e_s(T_1) - e_a \right)$ 

(Source: Hui, S. C. M., 2009. Study of Thermal and Energy Performance of Green Roof Systems: Final Report)

### Thermal modelling of green roofs 綠化屋頂的導熱建模



Radiation:  $R_n = R \exp(-k_s LAI)$ Evapo-transpiration:  $q'' = -2LAI \frac{\rho C_p}{\gamma (r_e + r_i)} (\frac{w \Re T}{h_m})$ Conduction:  $q'' = (T_{s1} - T_{s2}) / R_{total}$ 



- 3. <u>Social and aesthetic benefits</u>:
  - Aesthetic for urban space (natural outlook)
    - Relief from concrete construction
  - Provide usable green space for sports & leisure
    - Community gardens, recreational/relaxing space
  - Community participation for greening
    - Such as urban agriculture
  - Enhance local employment
    - For greenery installation & maintenance





- Aesthetic value of green roofs
  - Unattractive view of bare roofs (dark asphalt)
  - Green roofs are more pleasant to be looked at
    - Improve employee productivity
  - Therapeutic effects
    - Stress reduction
    - Lower blood pressure
    - Relieve muscle tension
    - Increase positive feeling





Urban farming & education

Horticultural therapy & social functions

### Rooftop urban farming in the world



Bangkok, Thailand (with rice and fruits)



Tokyo, Japan (rooftop greenhouse)



London, UK (with bee keeping)



San Francisco, USA (for kitchen/restaurant)

(Source: www.time.com)

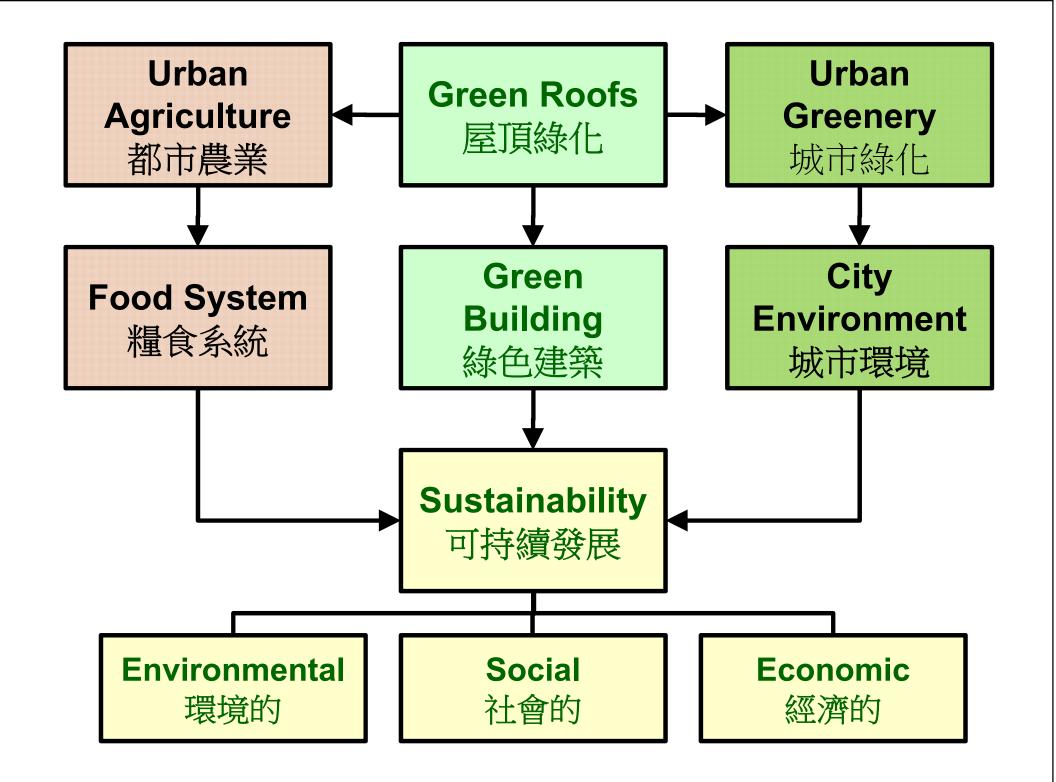
#### Urban farming on green roofs



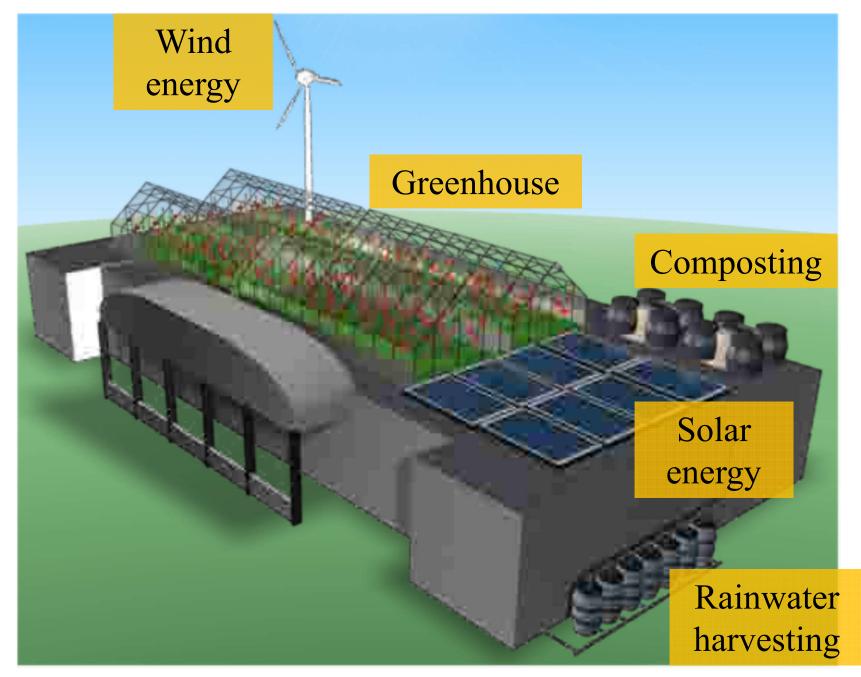
Farming on the roof



Vegetables and herbal plants

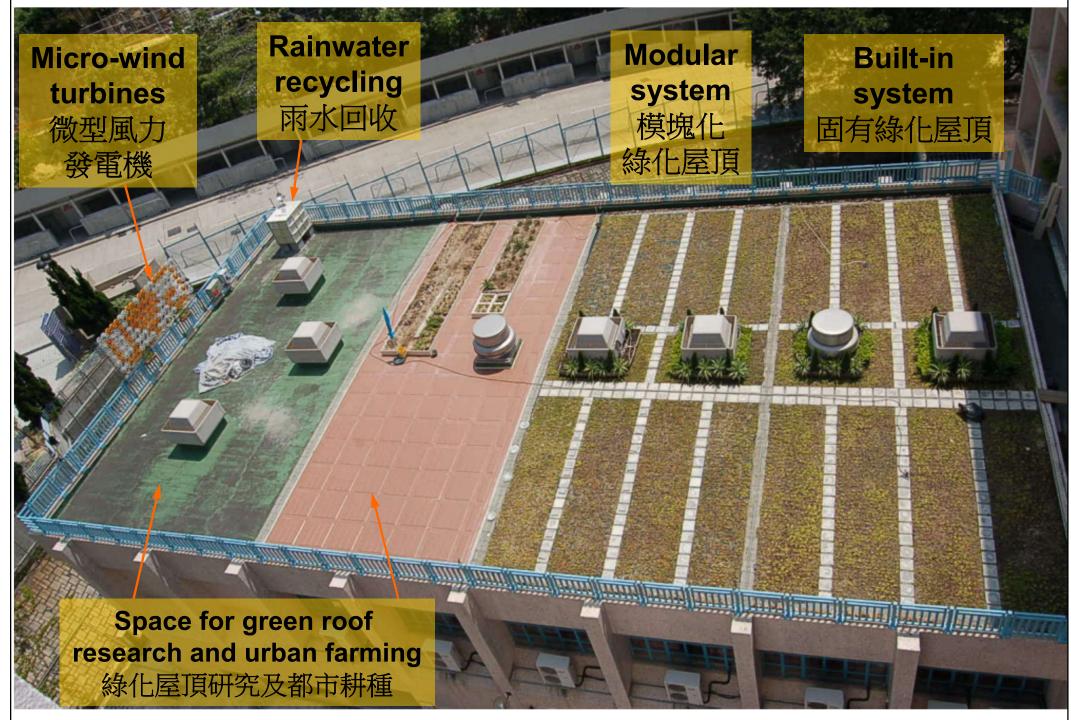



Water melon




Green beans

(Photos taken by Dr Sam C M Hui; Acknowledgement: St. Bonaventure Catholic Primary School)




### Sustainable rooftop farming



(Source: www.skyvegetables.com)

### A green roof project with integrated systems





- Green Building Assessment Methods
  - Such as LEED and BEAM Plus
  - They are becoming more and more popular and important
  - In fact, greening technology has significant implications to the assessment results
  - Green roofs can gain credit points in the green building assessment or rating schemes

### LEED 2009 credit points of green roof systems

| LEED criteria impacts:                           | Points |
|--------------------------------------------------|--------|
| Sustainable Sites (SS)                           |        |
| Credit 6.1: Stormwater design – quantity control | 1      |
| Credit 6.2: Stormwater dseign – quality control  | 1      |
| Credit 7.2: Heat island effect – roof            | 1      |
| Water Efficiency (WE)                            |        |
| Credit 1: Water efficient landscaping            | 2-4    |
| Energy and Atmosphere (EA)                       |        |
| Credit 1: Optimize energy performance            | 1      |
| Materials and Resources (MR)                     |        |
| Credit 4: Recycled content (roof components)     | 1-2    |
| Credit 5: Local/Regional materials               | 1-2    |
|                                                  |        |
| Secondary credit impacts:                        | Points |
| Water Efficiency (WE)                            |        |
| Credit 2: Innovative waste water technologies    | 2      |
| Credit 3: Water use reduction                    | 2-4    |
| Innovation in Design (IN)                        |        |
| Credit 1: Innovation in design                   | 1-5    |

Source: extracted from USGBC (2009)

### BEAM Plus credit points of green roof systems

| DEAM Dive oritoria immediate                | Points |  |
|---------------------------------------------|--------|--|
| 1                                           |        |  |
| Sites Aspects (SA)                          |        |  |
| Perequiste: Minimum landscape area          | Req'd  |  |
| SA 5: Ecological impact                     | 1      |  |
| SA 7: Landscaping and planters              | 1-3    |  |
| SA 8: Microclimate around buildings (roof)  | 1      |  |
| Materials Aspects (MA)                      |        |  |
| MA 7: Recycled materials (roof components)  | 1      |  |
| Credit 5: Local/Regional materials          | 1-2    |  |
| Energy Use (EU)                             |        |  |
| EU 1: Reduction of CO <sub>2</sub> emission | 1-15   |  |
| EU 2: Peak electricity demand reduction     | 1-3    |  |
| Water Use (WU)                              |        |  |
| WU 1: Water efficient irrigation            | 1      |  |
| WU 6: Effluent discharge to foul sewers     | 1      |  |
|                                             |        |  |
| Secondary credit impacts:                   | Points |  |
| Water Use (WU)                              |        |  |
| WU 4: Water recycling (rainwater)           | 1-2    |  |
| Innovations and Additions (IA)              |        |  |
| IA 1: Innovative techniques                 | 1-5    |  |

Source: extracted from BEAM Society (2009)

## **Design considerations**

- Key factors for planning
  - Structural loading
  - Accessibility
  - Waterproofing
  - Drainage
  - Maintenance
- Other design considerations
  - Selection of plants
  - Stakeholders' involvement & support

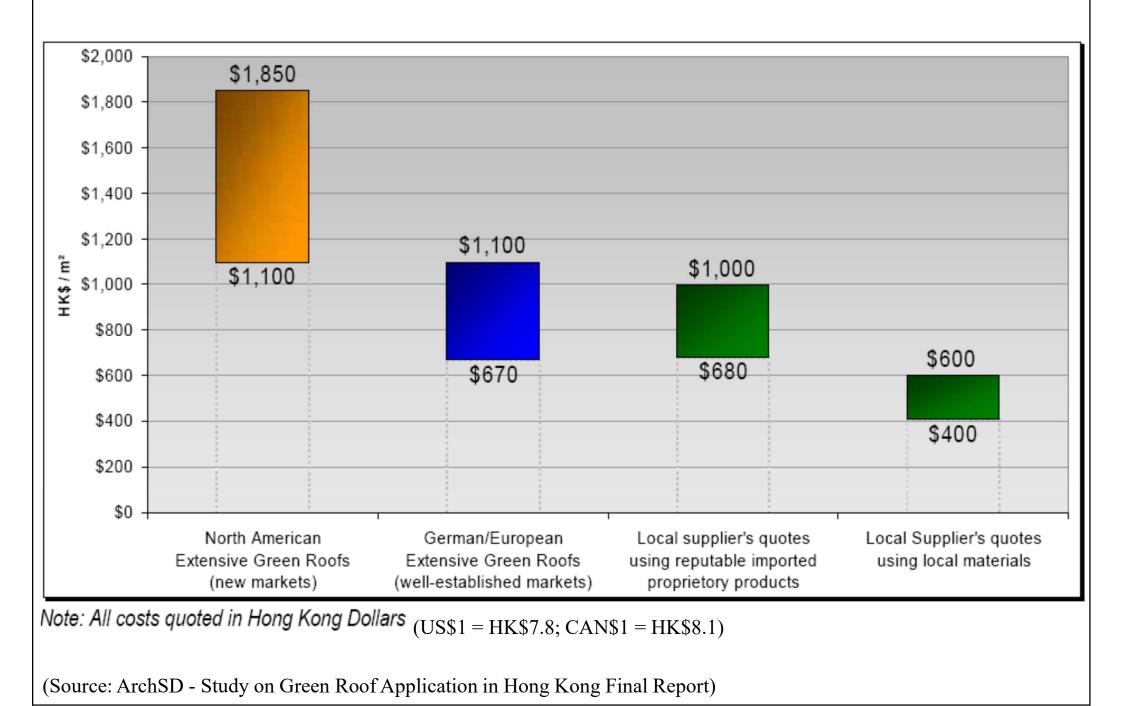


Major factors to consider when applying green roofs

| Planning       | - Functions and effects                 |
|----------------|-----------------------------------------|
| Requirements   | - Structural loading                    |
|                | - Accessibility                         |
|                | - Site conditions (wind, shade)         |
|                | - Water proofing condition              |
|                | - Green building credits                |
| Design         | - Landscape design                      |
| Considerations | - Irrigation & water supply             |
|                | - Stormwater drainage                   |
|                | - Plant species                         |
|                | - Wind design (e.g. typhoons)           |
|                | - Sustainable technologies (e.g. solar) |
|                | - Food production (farming)             |
|                | - Rainwater recycling                   |
|                | - Roof slope                            |
| Construction   | - Safety issues (preventing falls)      |
|                | - Vegetation planting method            |
|                | - Testing & monitoring                  |
| Maintenance    | - Maintenance requirements              |
|                | - Warranties                            |
|                | - External fire hazard                  |
|                | - Safety issues                         |
| Project        | - Green building assessment             |
| Management     | - Financial incentives                  |
|                | - Regulatory measures                   |
|                | - Contractual matters                   |
|                |                                         |

## **Design considerations**

- Choosing the site (on existing buildings)
  - Loading capacity
    - Weight of green roof, equipment & people
  - Government regulations
    - e.g. on height, railing
  - Sunlight and wind exposure
  - Access and safety
    - e.g. access to water, electricity
  - Specific needs
    - e.g. elderly and handicaps




## **Design considerations**

- Cost breakdown of typical extensive greenroof (example from www.greenrooftops.com)
  - Soil substrate + drainage + mulch (48%)
  - Plant materials (31%)
  - Root barrier & waterproofing (16%)
  - Drip irrigation (5%)
- Planning and funding of green roofs requires an understanding of life-cycle costs
  - From cradle to grave; environmental benefits



### Capital cost rang comparison of extensive green roof



## **Further reading**



- Video: Do Cities Need More Green Roofs? | NPR (3:49) <u>https://youtu.be/FlJoBhLnqko</u>
- Introductory Guide on Greening in Buildings (Buildings Department)
  - <a href="http://www.bd.gov.hk/english/documents/pamphlet/IGG\_e.pdf">http://www.bd.gov.hk/english/documents/pamphlet/IGG\_e.pdf</a>
- Skyrise Greenery
  - <a href="http://www.greening.gov.hk/en/green\_technologies/skyrise.html">http://www.greening.gov.hk/en/green\_technologies/skyrise.html</a>
- Hui, S. C. M., 2016. Green roof development in Hong Kong, *Hong Kong Engineer*, 44 (7).
  - http://www.hkengineer.org.hk/program/home/article.php?aid =8841&volid=193