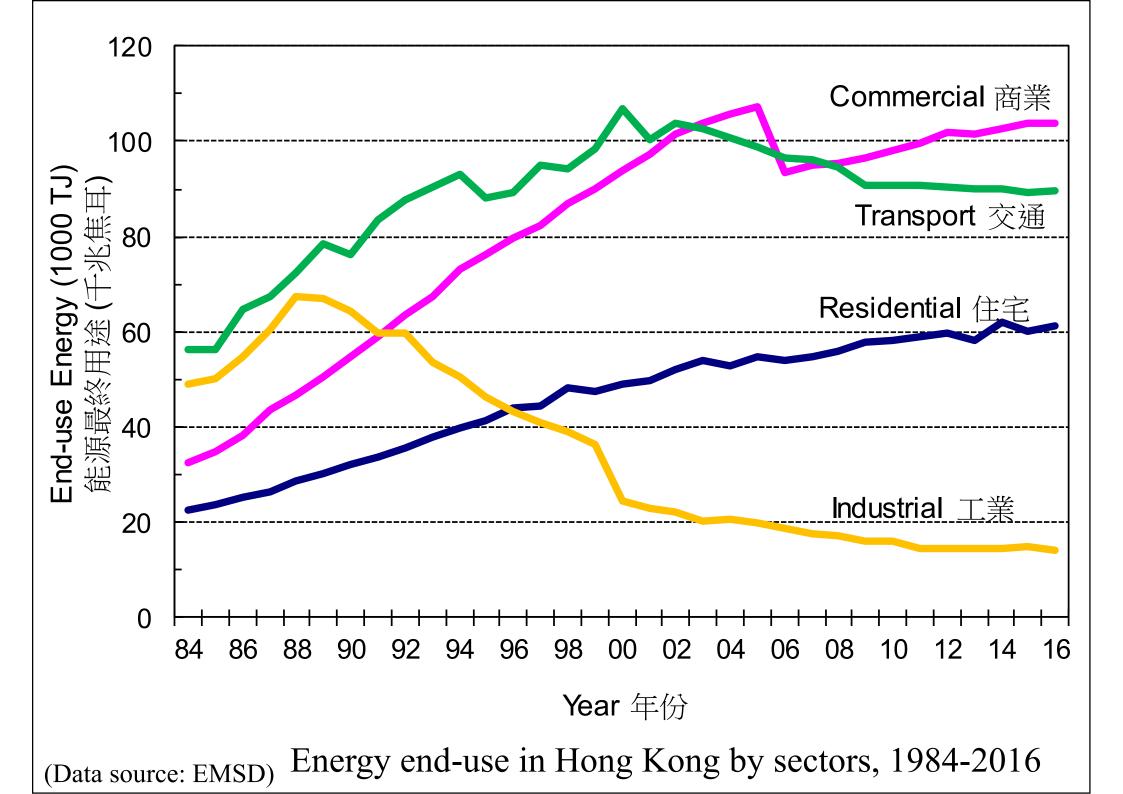
SBS5421 Building Energy Efficiency cum Carbon Emission

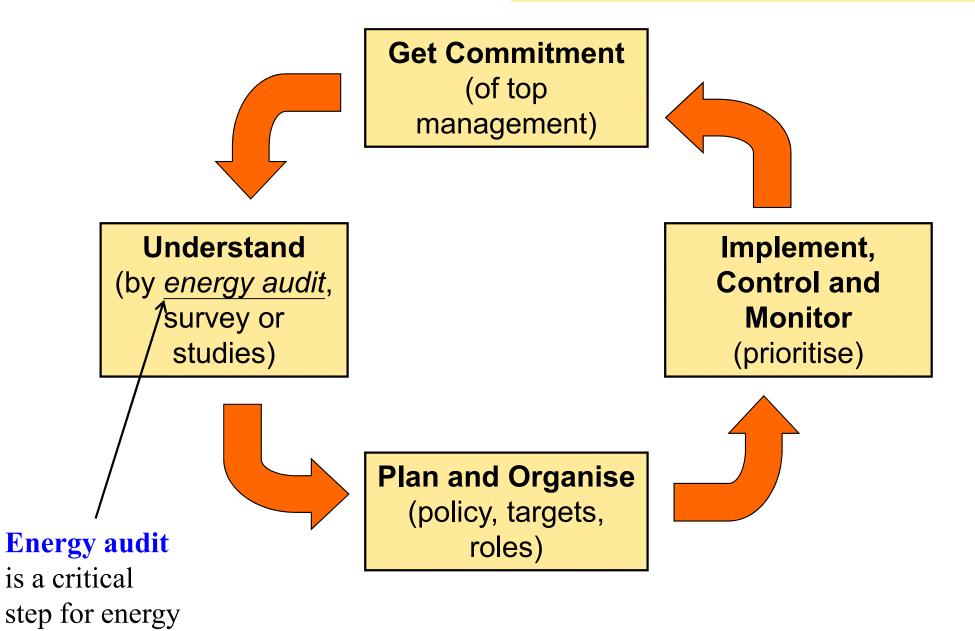
http://ibse.hk/SBS5421/

Building energy audit and survey


Ir. Dr. Sam C. M. Hui
Faculty of Science and Technology
E-mail: cmhui@vtc.edu.hk

Contents

- Basic Concepts
- Types of Energy Audits
- Planning of Energy Audits
- Energy Audit Process
- Energy Audit Report
- Energy Management Opportunities
- Implementation Issues



- Energy end-use in HK (trend in 1984-2016)
 - Commercial sector: increases at 4.7% per year
 - Residential sector: increases at 3.5% per year
- Average consumption: (examples)
 - Office: 265 kWh/m²/year
 - Hospital: 200 kWh/m²/year
 - Post office: 170 kWh/m²/year
- How to control/manage this?

A systematic approach to energy management

Do you remember P-D-C-A cycle?

management

- What is Energy Audit (能源審核)?
 - Examination of an energy system or equipment to ensure that energy is being used *efficiently*
 - Process to check for areas of *inefficiency*
 - It is a <u>top-down</u> initiative. Its result depends on the resources being allocated by top management
 - Aims to identify energy management opportunities
 (EMO) & means for improvement
 - In many ways, an energy audit is similar to financial accounting and auditing

- Overview of energy audit
 - Collection and analysis of <u>relevant information</u> that may affect building energy consumption
 - Review the information, <u>analyse</u> the conditions and performances of existing equipment, systems and installations, and the energy bills
 - <u>Compare</u> with performances at relevant energy efficient modes of operation
 - <u>Identify</u> areas of energy inefficiency and the means for improvement

- Benefits of energy audit
 - Financial
 - Reduce energy and other running costs
 - Reduce maintenance costs
 - Operational
 - Improve building management
 - Increase productivity via improved working conditions
 - Environmental
 - Reduce CO₂ emission and conserve resources

- Conducting the energy audit
 - Check the energy consuming equipment/systems of the central building services installations
 - Evaluate their operation characteristics and controlling parameters
 - Identify as many EMOs as possible and their categorisation

- Auditing steps: (* see also HK Energy Audit Code)
 - Step 1 Collection of Building Information
 - Step 2 Review of Energy Consuming Equipment
 - Step 3 Identification of EMO
 - Step 4 Cost Benefit Analysis of EMO
 - Step 5 Recommendations
 - Step 6 Compiling Energy Audit Report
- Energy audit and related forms
 - www.emsd.gov.hk/beeo/en/mibec forms.html

- Energy audits are like photography
 - Everybody thinks they can do it
 - Tools are cheap and available
 - Producing a product is easy
 - But results may vary...

In fact, a lot of skills and experience are needed to ensure that recommendations are cost effective, technically feasible, and result in significant energy savings

- The term "energy audit" (能源審核)
 - It is perceived as carrying the negative connotations (an involuntary investigation of finances, where the intended goal is to uncover mistakes and assess monetary penalty)
- Better to avoid such negative connotations
 - To gain better acceptance by the building managers and operators
 - The term "energy assessment"(能源評估) is used

- Two common types of energy audits:
 - General walk-through audit
 - Limited resources
 - Focus on major energy consuming equipment
 - Give an overview of potential saving options
 - Could identify areas for further investigation
 - Detailed audit (full audit)
 - More resources
 - Detailed planning
 - Practically investigating all equipment & systems

- Investment grade audit (IGA)
 - Expand on the detailed audit
 - Analyses the financial aspects of energy savings and the return on investment (ROI) from potential changes or upgrades
 - Aim to justify the energy investment
 - Rely on a complete engineering study in order to detail technical and economical issues

- Levels of effort of energy audit (ASHRAE)*
 - Preliminary Energy-Use Analysis (PEA)
 - Level 1 Walk-Through Analysis
 - Level 2 Energy Survey and Analysis
 - Level 3 Detailed Analysis of Capital-Intensive Modifications
- Also, Targeted Audits (of a specific system or end use, such as the chiller plant)

Relationship of energy audit levels 1, 2, and 3

Preliminary Energy Use Analysis

- Calculate kBTU/sf
- Compare to similar

Level 1: Walk-through

- Rough Costs and Savings for EEMs
- Identify Capital Projects

Level 2: Energy Survey & Analysis

- End-use Breakdown
- Detailed Analysis
- Cost & Savings for EEMs
- O&M Changes

Level 3: Detailed Survey & Analysis

- Refined analysis
- Additional Measurements
- Hourly Simulation

(Source: ASHRAE 2011. Procedures for Commercial Building Energy Audits, Second Edition)

Energy audit level summary: Process

Process	Level						
	1	2	3				
Conduct Preliminary Energy Analysis (PEA)	•	•	•				
Conduct walk-through survey	•	•	•				
Identify low-cost/no-cost recommendations	•	•	•				
Identify capital improvements	•	•	•				
Review M&E design, condition and O&M practices		•	•				
Measure key parameters		•	•				
Analyse capital measures (savings & costs including interaction)		•	•				
Meet with owner/operators to review recommendations		•	•				
Conduct additional testing/monitoring			•				
Perform detailed system modeling			•				
Provided schematic layouts for recommendations			•				

Energy audit level summary: Report

Report	Level			
	1	2	3	
Estimate savings from utility rate change	•	•	•	
Compare EUI (energy use index) to that of similar sites	•	•	•	
Summarize utility data	•	•	•	
Estimate savings if EUI met target	•	•	•	
Estimate low/cost / no-cost savings		•	•	
Perform detailed end-use breakdown		•	•	
Estimate capital project costs and savings		•	•	
Complete building description and equipment inventory		•	•	
General description of considered measures		•	•	
Recommended M&V (measuremt. & verification) method		•	•	
Financial analysis of recommended EMOs		•	•	
Detailed description of recommended measures			•	
Detailed EMO cost estimates			•	

(Source: ASHRAE 2011. Procedures for Commercial Building Energy Audits, Second Edition)

- Preliminary Energy-Use Analysis (PEA)
 - Done prior to site visit
 - Required 1st step for Level 1 audit
 - Compile billing data
 - Calculate Energy Use Intensity (EUI)
 - $(kWh/m^2 \text{ or } MJ/m^2)$
 - Compare to similar buildings:
 - Using benchmark data
 - The building's own portfolio (don't forget to correct for weather, schedules, etc.)

- Level 1 Walk-Through Analysis
 - Process
 - Conduct Preliminary Energy Analysis (PEA)
 - Conduct walk-through survey
 - Identify low-cost/no-cost recommendations
 - Identify capital improvements
 - Report (brief)
 - Estimate savings from utility rate change
 - Compare EUI to that of similar sites
 - Summarise utility data
 - Estimate savings if EUI met target

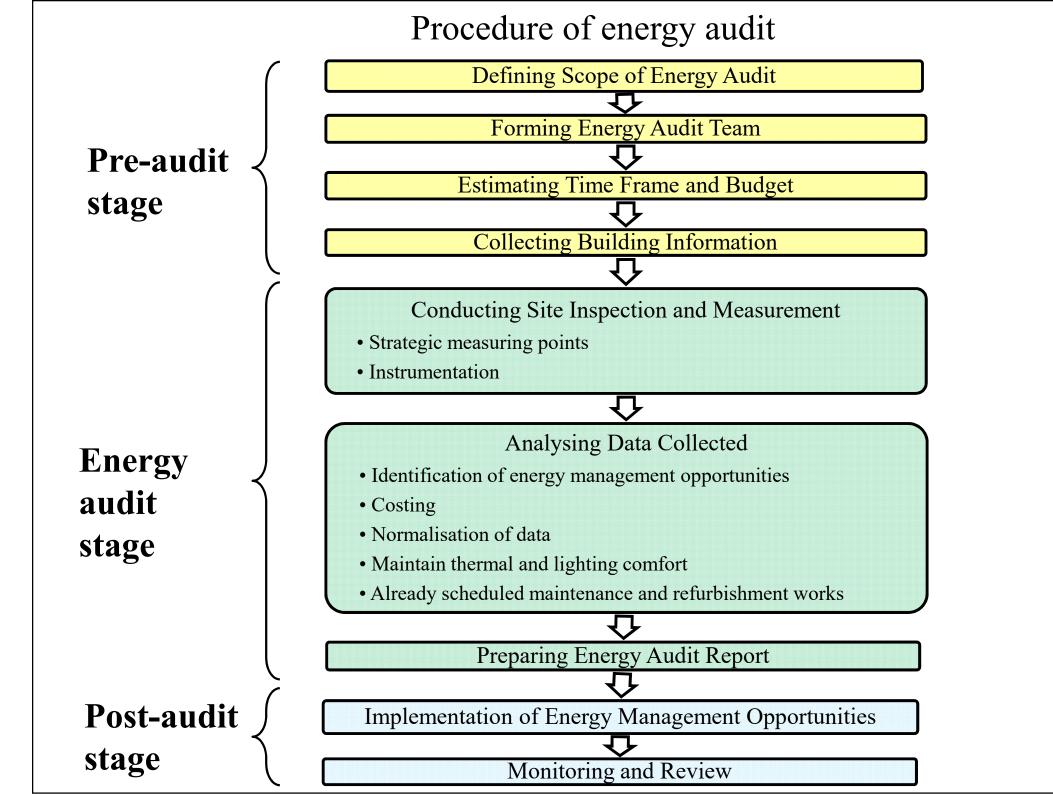
- Level 2 Energy Survey and Analysis
 - Process
 - Detailed site visit
 - Review M&E design, condition and O&M practices
 - Measure key parameters
 - Analyse capital measures (savings & costs including interaction)
 - Meet with owner/operators to review recommendations

- Level 2 Energy Survey and Analysis (cont'd)
 - Report
 - Estimate low-cost/no-cost savings
 - Perform detailed end-use breakdown
 - Estimate capital project costs and savings
 - Complete building description and equipment inventory
 - General description of considered measures
 - Recommended M&V method
 - Financial analysis of recommended EMOs

Example of EMO summary table

V. 171911		Annual Energy and Cost Savings						Payback with Incentive							
Measure Number	Measure Description	Description Peak Electricity Gas Total CO ₂ Savings Savings Savings Cost Saving		CO ₂ Savings (tons)	Measure Cost		Potential WG&E Incentive		Measure		MIRR	Simple Payback (yr)			
	Lighting Measures														
EEM-1	Reduce Garage Lighting to Half Overnight	0.0	34,465	0	s	3,447	18.9	\$	750	\$	375	s	375	27%	0.1
EEM-2	Install Photocell To Control Lobby Lights	1.4	4,047	0	\$	405	2.2	\$	2,047	\$	503	\$	1,544	7%	3.8
EEM-3	Install Photocell to Control Outdoor Lights and Schedule	0.0	15,257	0	\$	1,526	8.4	\$	1,795	\$	897	s	897	17%	0.6
EEM-4	Re-Commission Lighting Controls	0.0	109,102	0	\$	10,910	59.9	\$	9,720	\$	4,860	\$	4,860	19%	0.4
EEM-5	Install Bi-Level LED Fixtures in Garage	6.3	84,765	0	5	8,476	46.5	5	7,127	5	8,257	5	88,870	6%	10.5
	Kitchen Measures														
EEM-6	Kitchen Hood and Fan Upgrade:	0.0	138,763	5,989	\$	18,668	111.2	\$	33,085	\$	13,800	\$	19,285	17%	1.0
EEM-7	Install Controls to Schedule Two Pan Chillers in Servery	0.0	9,907	0	\$	991	5.4	\$	1,400	\$	700	\$	700	16%	0.7
EEM-8	Kitchen AC-5 - Expand Outside Air Intake Area	2.2	5,192	0	\$	519	2.9	\$	1,464	\$	689	s	775	15%	1.5
EEM-9	Install Controls to Schedule Temperature Setbacks for Kitchen AC-5	0.0	1,010	907	s	827	5.9	s	1,000	\$	500	s	500	17%	0.6
	Main Air Handler Measures (Occupied Hou	rs Only)												,	
EEM-10	Repair Economizers and Convert to Dry Bulb Temperature Control	0.0	155,576	0	\$	5,558	85.4	\$	25,083	\$	12,542	s	12,542	15%	0.8
EEM-11	Supply Air Temperature Optimization and Duct Static Pressure Reset	1.4	178,563	0	\$	7,856	98.1	\$	18,506	\$	9,253	s	9,253	18%	0.5
EEM-12	Install VFDs on Exhaust Fans	(4.7)	31,858	0	\$	3,186	17.5	\$	33,853	\$	2,396	\$	31,456	6%	9.9
	SUB-TOTALS	6.5	768,505	6,896	\$	2,368	462.3	\$	225,830	\$	54,772	\$	171,058	12%	2.1
TOTALS (R	Recommended Measures)	6.5	768,505	6,896	\$	82,368	462.3	\$	225,830	\$	54,772	\$	171,058	12%	2.1

(Source: www.kw-engineering.com)


- Level 3 Detailed Analysis
 - Level 2 and then more...(additional scope & value)
 - Process
 - Additional testing/monitoring
 - Detailed system modelling
 - Schematic layouts for recommendations
 - Report
 - Detailed description of recommended measures
 - Detailed EMO cost estimates
 - LCCA (life cycle cost analysis)

- Energy audits can be carried out by
 - Building manager or internal staff (in-house)
 - External consultant or professionals
- Typical stages of energy audit:
 - 1. Pre-audit stage
 - 2. Energy audit stage
 - 3. Post-audit stage

- Define available resources for energy audit:
 - Staff, Time and Budget
- Resources required for energy audits:
 - Staff with relevant knowledge/skills
 - Time to perform the tasks involved
 - Measuring equipment and metering
 - Finance for the audit and to implement measures
 - Technical and operational information

- Scope of energy audit include:
 - Areas to be audited
 - Level of sophistication
 - Savings anticipated
 - Needs for improvements on O&M
 - Needs for training
- Importance of involving senior management, facilities operator and staff
 - Will need assistance and cooperation from the end-users and building staff

- Energy audit team
 - The number of auditors depend on the scope and objectives of the energy audit
 - Duties of the team members should be defined
 - Auditors are competent persons having adequate knowledge on building services installations
 - Involve the facilities operators to provide input
 - If in-house expertise is not adequate, energy audit consultants should be employed

Planning of Energy Audits

- Team building is key to audit & implementation success
 - Seek involvement with key players at site
 - Let folks do what they're good at
 - Leave site staff with the knowledge to follow through
- Don't believe everything you hear
 - Site inspections with staff can be misleading
 - Your questions may be threatening

Planning of Energy Audits

- Building a balanced team (if possible)
 - Committed management
 - Engaged financial staff who understand risks and rewards
 - Trained building engineers
 - Trusted contractors and vendors
 - Utility account representatives
 - Engaged and informed building occupants
 - Trained and experienced energy auditor

- Costs vs. Accuracy
 - Energy auditing seeks to strike a balance between time spent and the value returned
 - Important to allow flexibility to seek the best return on time
 - Too little effort... may result in less identified potential
 - Too much effort... gilded lilies and science projects

- Time frame and budget
 - Established based on available resources
 - Budget is mainly built up on cost of auditor hours
 - · Auditor-hour depend on the degree of sophistication
 - A detailed audit can have auditor-hours that are about 5 to 10 times that required by a walk-through audit
 - Should check if adequate testing instruments are available and cost of additional instruments
 - Also, the cost of employing consultants (if any)
 - Disruption to building tenants

- Testing instruments
 - Electrical
 - e.g. multi-meter, wattmeter, power factor meter, light meter, power quality analyser
 - Temperature and humidity
 - e.g. sling psychrometer, infrared remote temp. sensing gun, digital thermometer
 - Pressure & velocity
 - e.g. manometer, anemometer, pressure gauge
 - Miscellaneous (exhuast gas analyser, tachometer)

Instruments for energy audit and measurements

Infrared

thermometer

Sling psychrometer

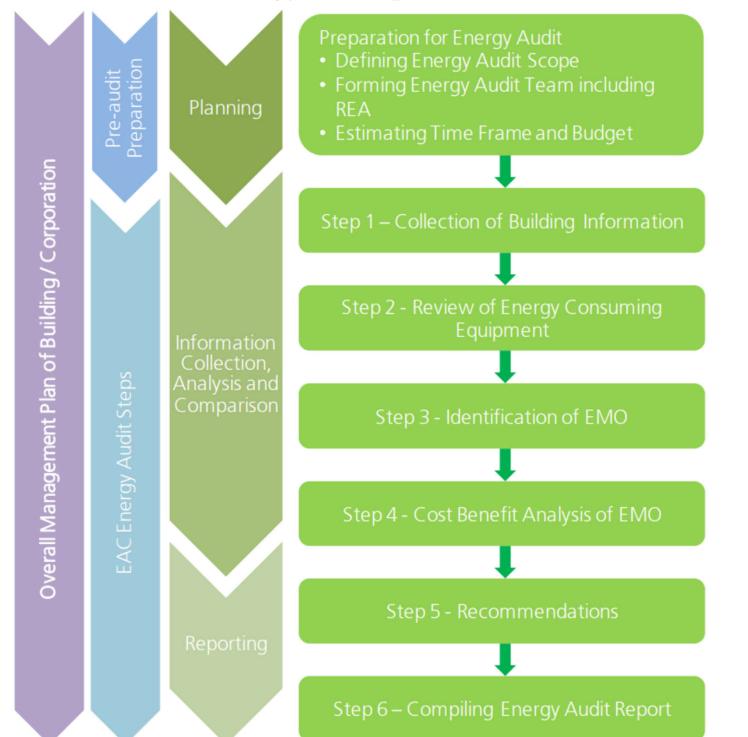
Temp. logger

Anenometer

Pyranometer

Clamp-on ammeter

Multimeter



Temp + RH logger

Infrared camera

Overview of energy audit process (from EMSD)

- Process of energy audit and analysis
 - Collect & analyse historical energy use
 - Study the building & its operational characteristics
 - Identify potential modifications that will reduce the energy use and/or cost
 - Perform an engineering & economic analysis of potential modifications
 - Prepare a rank-ordered list of appropriate modifications & a report to document the analysis process/results

- Collect building information
 - General characteristics, e.g. floor plan, number or occupants, operation hours, construction details
 - Technical details of energy consuming equipment/systems
 - Building services system schematic diagrams, layout drawings, etc.
 - Equipment/system operation records & log sheets
 - Operation & maintenance (O&M) manuals
 - Testing & commissioning (T&C) reports
 - Bills (electricity, town gas, LPG, diesel) for past 3 years
 - Records of energy saving measures already implemented

- The audit team should determine & discuss with building manager/operator to get familiar with the building and the equipment/systems
- If needed, may issue questionnaires to endusers to collect info. on thermal comfort, lighting, actual operational hours, etc.

- At this stage, the audit team should be able to tell the characteristics of the energy consuming equipment/items such as:
 - Types of chillers, their capacities & characteristics
 - Types of HVAC systems, their components & characteristics
 - Occupancies or usage for various systems
 - Control devices for various equipment/systems
 - Types of luminaires, their characteristics & control mechanisms
 - Power distribution system characteristics
 - Operational characteristics of lift & escalator system
 - Characteristics of the building

- Site inspection & measurement
 - Plan the site inspection for the areas & the equipment/systems to be investigated
 - Allocate the work among the auditors
 - Develop energy audit forms to record the findings
 - Plan ahead on the site measurements to supplement or verify the information collected
 - The measurements should focus on equipment/systems that inadequate information is available

Energy Audit Process

- Site inspection & measurement (cont'd)
 - Inspection of building & plants to identify obvious areas of wastage and EMO. Typical areas include:
 - Running hours of AC system
 - Running hours of other systems/equipment
 - Length of AC pre-cool period
 - Control set point of above systems/equipment
 - Internal comfort conditions, e.g. temperature, humidity
 - Doors not properly closed
 - Curtains or blinds not provided in AC areas

- Site inspection & measurement (cont'd)
 - Typical areas include: (cont'd)
 - Locations where AC & lighting are over provided
 - The use of energy inefficient lighting
 - Improper positioning of thermostats & switches
 - Abnormal water consumption
 - Adequacy of insulation of building fabrics
 - Amount of waste heat discharged from equipment that could be recovered
 - Areas of high energy consumption & the opportunities for improvement

Energy Audit Process

- Analysing data collected
 - Identification of EMOs
 - Costing (calculate payback period, net present worth or rate of return, or assess life cycle cost)
 - Normalisation of data (e.g. for date or weather)
 - Maintaining thermal & lighting comfort
 - Scheduled maintenance & refurbishment works
 - Annual monthly energy consumption profile
 - Energy utilisation index, and breakdowns

- Typical report structure/contents:
 - Executive Summary
 - 1. Introduction
 - 2. Description of Equipment/Systems Audited
 - 3. Findings
 - 4. Analysis and Identification of EMOs
 - 5. Recommendations
 - References
 - Appendices

Typical structure of an energy audit report

Executive Summary

- Overview of the audit, EMOs identified
- Recommended actions, briefing on implementation plan

Introduction and Building Information

- Objectives, energy audit scope, audit team
- Building characteristics (type, floor areas, operation)

Description of the Equipment/Systems Audited

• System types, capacity ratings, zoning, operation hours etc.

Energy Data and Survey Findings

- Historical energy consumption of the building
- System performance evaluation, O&M practices

Energy Management Opportunities

- Identification & evaluation of potential EMOs
- List of recommended EMOs and implementation plan

Conclusions and Recommendations

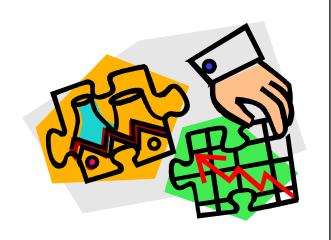
- Executive Summary
 - Provides a quick overview of the scope of audit, EMOs identified, recommended actions justified by savings and implementation plan
- 1. Introduction
 - The building being audited with characteristics of the building, schematics, layouts as appendix
 - Objectives
 - Scope of audit & audit team

- 2. Description of Equipment/Systems Audited
 - Zoning of systems from building height or usage
 - HVAC installation for different areas
 - Lighting installation
 - Electrical installation
 - Lift & escalator installation
 - Pluming & drainage system
 - Hot water system
 - Other energy consuming equipment/systems

- 3. Findings
 - Focus on description of the results of the site inspection
 - Findings in a systematic format, e.g. in order of systems or order of floors or in order of usage
 - Description of areas with special requirements, e.g. 24-hour operation, low temperature, etc.

- 3. Findings (cont'd)
 - Calculation on cooling load, lighting load, electrical load & annual consumption with detailed calculation in appendix
 - Findings on O&M procedures and practices
 - Preliminary identification of EMOs

- 4. Analysis and Identification of EMOs
 - Comparison on actual performance of equipment/systems against original design & identify causes of any discrepancy
 - Possible EMOs and substantiations (detailed calculations in appendix)
 - Implementation costs for EMOs (detailed calculations in appendix)
 - Comparison of different solutions to the same EMOs


- 4. Analysis and Identification of EMOs (cont'd)
 - Classification of the EMOs into categories
 - Listing of all EMOs in a systematic format such as in order of system, e.g. HVAC, lighting, etc.
 - Investment and payback of each EMO
 - Difficulties that may encounter in implementation
 - Programme for implementation of EMOs
 - Areas for further study, if any

- 5. Recommendations
 - Recommendations should be made in a systematic order
 - Grouping items of similar nature/location/usage together
 - Grouping according to their categories (i.e. Cat. 1, Cat. 2 and Cat. 3)
 - The initial investment and payback should be highlighted here again

- What to ask for in an audit report
 - Actionable recommendations
 - Realistic treatment of rates
 - Transparent analysis
 - Guidance to more resources
 - Reasonable savings estimates
 - Reasonable cost estimates
 - Analysis of interactive effects
 - Measurements of key input variables
 - Monitoring of baseline performance
 - Hourly modelling

- Top 10 to check in an energy audit
 - 1. Proposed measures are feasible and appropriate for the building
 - 2. Proposed measures meet /exceed applicable building codes
 - 3. Data are internally consistent
 - 4. Savings estimate methods follow established principles and methods
 - 5. Energy savings estimates are reasonable compared to quick estimates and historical energy use

- Top 10 to check in an energy audit (cont'd)
 - 6. Proposed cost estimates are reasonable relative to field experience
 - 7. Cost savings adequately treat utility rates
 - 8. Interactions between EMOs are identified and addressed
 - 9. Recommendations and report meet the project scope, goals, and client's needs
 - 10. Financial discussion includes current and viable mechanisms available per the tax structure, location, and motivations of the client

- 3 categories of EMOs:
 - Category I (no cost):
 - Housekeeping measures which are improvements with practically no cost investment and no disruption to building operation
 - Category II (low cost):
 - Changes in operation measures with relatively low cost investment
 - Category III (high cost):
 - Relatively higher capital cost investment to attain efficient use of energy

- Category I (Cat. I) EMOs (no cost)
 - Correct air/water flow rate
 - Switch off fittings in vacant areas
 - Delamping
 - Closing of doors, windows
 - Check fresh air dampers
 - Switch off lifts & escalators in off peak periods
 - Adopt natural or mechanical ventilation as far as possible

- Category I (Cat. I) EMOs (cont'd)
 - Housekeeping measures, e.g.
 - Notices, promotional activities, turn on equipment & systems based on operational hours
 - Adopt good operation & maintenance procedure
 - Check water leakage and air leakage
 - Cleaning of luminaries/heat exchanger/filter
 - Top up refrigerant, compressor oil, etc.
 - Lower lighting level for areas that is too bright
 - Proper setting of thermostat

- Category II (Cat. II) EMOs (with little cost)
 - Blinds & curtains
 - Tree planting near curtain wall
 - Air curtain for automatic door
 - Self luminous exit sign
 - Additional switches and controllers
 - Sealing of building leakages
 - Replace incandescent lamps with CFLs
 - Replace electro-magnetic ballasts w/ electronic ones

- Category II (Cat. II) EMOs (cont'd)
 - Energy efficient office equipment
 - Replacing damaged insulation
 - Occupancy sensor, CO₂ sensor & daylight sensor
 - Time switch
 - Re-programming of control systems
 - Setback control
 - Harmonic filter
 - Power factor correction device

- Category III (Cat. III) EMOs (high cost)
 - Installing T5, T8 with electronic ballasts
 - Building management system (BMS) and software enhancement
 - New chillers w/ high coeff. of performance (COP)
 - Water-cooled system with cooling tower
 - High efficiency motors
 - Variable speed drive (VSD)
 - Water saving taps & low volume water closet

- Category III (Cat. III) EMOs (cont'd)
 - Recover waste heat/cool air e.g. thermal wheel,
 - Heat pump
 - Automatic condenser cleaning
 - Modernization of old lifts
 - Green Initiatives that enhance corporate image, e.g. renewable energy, replacement of ozone depleting refrigerant

(*See also http://ee.emsd.gov.hk/english/general/gen_energy/gen_en_energy.html for some typical findings in an audit, the corresponding EMOs and energy savings percentage)

- An audit is worth nothing if managers do not use the information productively
 - Should incorporate the findings into an energy-savings plan to immediately begin reducing costs and eliminating energy waste
 - Can use the audit financial analyses to convince the owner of the potential financial and energysaving benefits. The owner then can budget for the cost of implementing the approved measures

- Four tasks to complete an investment grade audit (IGA):
 - Task 1. Preliminary assessment of needs and opportunities
 - Task 2. Preliminary analysis of measures
 - Task 3. Detailed analysis and investment grade audit report
 - Task 4. Develop energy savings performance contract proposal

- Task 1. Preliminary assessment of needs and opportunities
 - Clearly define your expectations and requirements for the ESCO
 - Collect preliminary building data (Walk Through Audit)
 - ESCO interviews facilities staff and occupants
 - Results (a preliminary list of potential savings measures)

- Keys to a successful first step
 - Clearly communicate your technical and financial goals
 - Meet early and often to discuss potential improvements
 - Share information on future planned capital projects
 - Make staff available for interviews
 - Include decision makers in the discussions

- Task 2. Preliminary analysis of measures
 - Establish base year energy consumption
 - Review 3 years of utility bill data
 - Determine end use energy loads
 - Determine the energy intensity by major end uses of utilities (e.g. HVAC, lighting, plug load)
 - Analyse operations (runtimes, temperatures, occupancy)
 - Compare to benchmark energy data to establish potential savings levels
 - Explore potential energy grants and rebates

- Task 2 Report:
 - Comprehensive list of potential energy and water saving measures
 - Preliminary cost and savings estimates
 - Project economics by specific savings measure
 - Preliminary cost estimate
 - Preliminary energy savings estimate
 - Operational cost savings estimate
 - Future capital cost avoidance estimate
 - Financial cash flow charts
 - Escalation factors

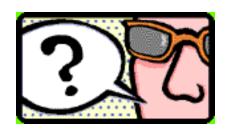
- Task 3. Detailed analysis and investment grade audit report
 - Firms up cost and savings assumptions
 - Perform detailed energy saving calculations
 - Energy saving software modelling
 - Detailed energy model
 - Perform life cycle analysis
 - Typical energy tools: e-Quest, Carrier Hourly Analysis Program (HAP), Trane TRACE 700
 - Follow Measurement and Verification guidelines


- Task 3 Project Costing:
 - Prepare detailed scopes of work
 - Include design and specifications
 - Solicit trade contractor bids
 - Solicit bids from qualified local contractors
 - Bids for each trade involved in the project
 - Add ESCO mark-ups to final contractor bids

- Task 4. Develop energy savings performance contract proposal
 - Proposal to include:
 - Design
 - Equipment and Installation
 - Monitoring of savings
 - Insurance and bonding
 - Schedule
 - Procure project financing

- How to implement the EMOs
 - Check if adequate staff resources would be available and if not employ an audit consultant to do the detailed design and specification
 - Identify the roles and responsibilities of the O&M personnel, the building management, end-users and relevant parties concerned
 - Discuss with all parties involved and inform them the audit objectives and the audit scope

- How to implement the EMOs (cont'd)
 - Organise meetings & an ad-hoc committee for the monitoring & coordination of EMOs
 - Consider ideas and comments from parties involved on the proposed EMOs
 - A lot of work may have to be carried out outside office hours, in order to minimise disruptions to routine building operation
 - A lot of lobbying may be worthwhile, in order to obtain end-users' support and cooperation



- Communication with end-users involved,
 O&M personnel and the building owner is very important to the success of EMOs
 - The audit team should take effort and time to convince these parties and have a harmonious relationship with them
 - The management concept of "partnership" among all parties concerned will smoothen the implementation process

- Monitoring of EMO implementation
 - To ensure that the EMOs are implemented properly, the audit team has to monitor the works and participation of parties concerned
 - The audit team needs to exercise control and adjust procedures from time to time, e.g. further negotiation with end-users on permitted working hours, settling site work conflicts with O&M personnel, processing payments to contractors, etc.

- EMSD, 2018. *Code of Practice for Building Energy Audit*, Electrical and Mechanical Services Department, Hong Kong.
 - https://www.emsd.gov.hk/beeo/en/pee/EAC_2018.pdf
- EMSD, 2015. *Technical Guidelines on Code of Practice for Building Energy Audit*, 2015 Edition, Electrical and Mechanical Services Department, Hong Kong.
 - https://www.emsd.gov.hk/beeo/en/pee/TG-EAC 2015.pdf
- Energy audit (HK EE Net), http://ee.emsd.gov.hk/english/general/gen energy/gen en energy.html
- ASHRAE Procedures for Commercial Building Energy Audits, 2nd ed., supplemental files:
 - https://xp20.ashrae.org/PCBEA/PCBEA_Supplemental_Files.html
 - Video: ASHRAE Procedures for Commercial Building Energy Audit (14:16) https://youtu.be/6mXLJzF2nfc

- ASHRAE Standard 211-2018: Procedures for Commercial Building Energy Audits http://4mechengineer.com/ashrae-standard-211-2018-standard-for-commercial-building-energy-audits/
- ASHRAE, 2011. *Procedures for Commercial Building Energy Audits*, 2nd ed., American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.
 - https://www.ashrae.org/technical-resources/bookstore/procedures-for-commercial-building-energy-audits
- Hansen, S. J. and Brown, J. W., 2004. *Investment Grade Energy Audit: Making Smart Energy Choices*, Fairmont Press, Lilburn, GA.
- Krarti, M., 2011. Energy Audit of Building Systems: An Engineering Approach, 2nd ed., CRC Press, Boca Raton, Florida.