Feedbacks on Progress Report & Design Report

Thei

Apr 2019
Feedbacks

• Objectives:
 • Provide feedbacks on Progress Report & Design Report for the whole class
 • Discuss the good & weak points of the students
 • Prepare for the final stage of the design project

• Feedbacks for each student group & individual student can be found on Moodle
Feedbacks

• Assessment results for the whole class
 • Total number of students: 105 (22 groups)
 • Combined results for Progress report (10%) + Design report (40%):
 • Mean = 70.3 (B)
 • Median = 67.2 (B-)
 • Standard deviation = 12.7
 • Range: D to A
 • The performance is better than Semester 1: FYP1 Conceptual Design
Feedbacks

- Top 10 students:
 - 170437195 TO Ho Yin Kevin (Group 19)
 - 170690649 LEUNG Hoi Man (Group 06)
 - 170363177 KWONG Kin Shing (Group 19)
 - 170264857 NG Ka Ying (Group 15)
 - 170206504 NG Yi Yan (Group 15)
 - 170352716 TSE Tsz Fung (Group 19)
 - 170203723 FUNG Ching Hong (Group 06)
 - 170356985 KWOK Ka Po (Group 19)
 - 170360206 TAM Wai Hoi (Group 07)
 - 170011203 CHEUNGRG Jeremy Daniel (Group 22)
Feedbacks

- **Overview:**
 - Average class performance is GOOD (B-, Mean = 70.3)
 - Progress reports (10%) are VERY GOOD (B, Mean = 74.1)
 - Design reports (40%) are GOOD (B-, Mean = 69.2)
 - Design reports: number of pages: 77 to 600 (Mean = 236, total 5,200 pages for 22 groups)

- Be environmentally friendly: not to print all of them & use electronic files for assessment/design review
- Should delete general & irrelevant information in the report (e.g. full equipment catalogues)
- Should summarise results & reduce unnecessary details (e.g. DIALux or HAP reports)
Feedbacks

- **Good points:**
 - Drawing skills (schematic diagrams & layouts) of some groups are very good
 - Report organization & design considerations of some groups are good
 - Good use of figures/diagrams to explain design arrangements (instead of words/texts)
 - Good attempt to propose renewable energy systems, GB features & BIM strategy
Feedbacks

Things to improve:
- Should check to reduce obvious errors & mistakes
- Should develop full details for plant rooms & typical spaces (to demonstrate detailed design)
- Should explain the strategy for MEP coordination & BIM execution
- Should prepare equipment schedules for future tendering
- Misunderstanding about lighting design method ("the art and science of lighting")
FYP1 Conceptual Design + FYP3 Detailed Design
Prepare for the final stage

- **Key issues (at detailed design stage)**
 - Developed schematic diagrams (to show all essential components & information clearly)
 - Layout plans (for plantrooms & typical spaces, to show location, distribution & spatial allocation)
 - Coordinated working drawings (for MEP coordination, e.g. plans, sections, 3D views, builder's work)
 - Diagrams (to explain design arrangements)
Prepare for the final stage

- Key issues (at detailed design stage) (cont’d)
 - Calculations (samples for major design tasks)
 - Design arrangements (confirm systems, sizing, location, routing, interface)
 - Design strategies (plant, energy, green, T&C, O&M, costs, construction programme)
 - Equipment schedule (list of major equipment & requirements, prepare for tendering)
 - Specifications (materials, workmanship, performance)
Prepare for the final stage

What’s Next:

• Select & prepare information for oral presentation and poster (pull-up banner) exhibition
• Final Design Report (full details of design solutions, may refer to previous reports)
• Technical designs and specifications (prepare for tendering and installation)
• Design coordination and integration (examples)
• Finalise details on calculations, drawings, zoning, interface and schedules
Prepare for the final stage

• Assessment Methods:
 • Progress (10%) [DONE]
 • Design Report (40%) [DONE]
 • Exhibition (10%)
 • Oral Presentation (10%)
 • Final Design Report (30%)
 • Report due date: 17 May 2019 (Fri)

26 Apr 2019 (Fri)