SPD4121 HVAC Technology for Plumbing Engineers http://ibse.hk/SPD4121/

Ir. Dr. Sam C. M. Hui Faculty of Science and Technology E-mail: cmhui@vtc.edu.hk

Jul 2016

Contents

- What is Thermal Comfort?
- Thermal Environment and Heat Balance
- Comfort Equation and Prediction
- Influencing Factors
- Environmental Indices
- Local Thermal Discomfort

(Acknowledgement: Cartoons and some figures are taken from: http://www.innova.dk)

What is Thermal Comfort?

Thermal Environments

Thermal Comfort is a matter of many parameters - **Not** only the air temperature.

00

5% outdoor, 95% indoor

Body Temperature

- Normal body core temperature: 37 °C.
- We have separate Heat- and Coldsensors.
 - Heat sensor is located in hypothalamus. Signals when temperature is higher than 37 °C.
 - Cold sensors are located in the skin.
 Send signals when skin temperature is below 34 °C.
- Heating mechanism:
 - Reduced blood flow.
 - Shivering.
- Cooling mechanism:
 - Increased blood flow.
 - Sweating (Evaporation).

Perception of Thermal Environment

- Heat sensor in Hypothalamus send impulses when temperature exceeds 37 °C.
- Cold sensors sends impulses when skin temperature below 34 °C.
- The bigger temperature difference, the more impulses.
- If impulses are of same magnitude, you feel thermally neutral.
- If not, you feel cold or warm.

The Energy Balance

• Thermal Comfort can only be maintained when heat produced by metabolism equals the heat lost from body.

• General heat balance S = M - W - E - (R + C)

where

- S = rate of heat storage of human body
- M = metabolic rate
- W = mechanical work done by human body
- E = rate of total evaporation loss
- R + C = dry heat exchange through radiation & convection

- Rate of heat storage, S
 - proportional to rate of change in mean body temp.
 - normally, S is zero; adjusted by the thermoregulatory system of the body
- Metabolic rate, M
 - heat released from human body per unit skin area
 - depends on muscular activities, environment, body sizes, etc.; unit is "met" (= 58.2 W/m²)
 - 1 met = seated quiet person (100 W if body surface area is 1.7 m²); see also the table in Figure 1

- Mechanical work, W
 - energy in human body transformed into external mechanical work
- Evaporative heat loss, E
 - release of latent heat energy from evaporation of body fluid
 - respired vapour loss, E_{res} (respiration heat losses: latent E_{rel} and sensible E_{rec})
 - evaporative heat loss from skin E_{sk} (include skin diffusion E_{dif} and regulatory sweating E_{rsw})

- Dry heat exchange, R + C
 - through convective and radiative heat transfer
 - heat loss by radiation if skin temp. > temp. of surrounding surfaces
 - heat loss by convection if skin temp. > dry bulb temp.
 - mean radiant temperature (t_r) is that uniform temp. of an imaginary black enclosure which result in the same heat loss by radiation as the actual enclosure

The Energy Balance

•The dry heat loss (R+C) represents ~70% at low Clovalues and ~60% at higher Clo-values

 Conduction (K) is normally insignificant
 compared to the total
 heat exchange

• Parameters influencing the Heat Loss from a person

Conditions for Thermal Comfort

- Two conditions must be fulfilled to maintain Thermal Comfort:
 - Heat produced must equal heat lost
 - Signals from Heat- and Coldsensors must neutralise each other
- The sweat production is used instead of body core temperature, as measure of the amount of warm impulses.
- Relation between the parameters found empirically in experiments.
- No difference between sex, age, race or geographic origin.

The Comfort Equation

Comfort Equation:

$$M - W = H + E_{c} + C_{res} + E_{res}$$
$$E_{c} = 3.05 \cdot 10^{-3} [5733 - 6.99 \cdot (M - W - P_{a}] + 0.42 \cdot (M - W - 58.15)$$
$$C_{res} = 0.0014 \cdot M \cdot (34 - t_{a})$$
$$E_{res} = 1.72 \cdot 10^{-5} \cdot M \cdot (5867 - P_{a})$$

H is either measured directly or calculated

The Comfort Equation (cont'd)

<u>What to measure</u>

Air Temperature + Mean Radiant Temperature + Air Velocity + Humidity

OR

Operative Temperature + Air Velocity + Humidity

OR

Equivalent Temperature + Humidity

What to estimate

MET - VALUE (Metabolism) CLO - VALUE (Clothing level)

• Fanger's comfort criteria

- developed by Prof. P. O. Fanger (Denmark)
- Fanger's comfort equation:

 $f(M, I_{cl}, V, t_{r}, t_{db}, P_{s}) = 0$ where M = metabolic rate (met) I_{cl} = cloth index (clo) V = air velocity (m/s) t_{r} = mean radiant temp. (°C) t_{db} = dry-bulb temp. (°C) P_{s} = water vapour pressure (kPa)

• Fanger's equation is complex

- but it may be transformed to comfort diagrams
- it can also be used to yield three indices:
 - predicted mean vote (PMV)
 - predicted percentage of dissatisfied (PPD)
 - lowest possible percentage dissatisfied (LPPD)

• **PMV**

- a complex function of six major comfort parameters;
- predict mean value of the subjective ratings of a group of people in a given environment

• PPD

- determined from PMV as a quantitative measure of thermal comfort
- 'dissatisfied' means not voting -1, +1 or 0 in PMV
- normally, PPD < 7.5% at any location and LPPD < 6%

Predicted Mean Vote scale

- +3 Hot
 - +2 Warm
 - +1 Slightly warm
- +0 Neutral
- 1 Slightly cool
- -2 Cool
- -3 Cold

The PMV index is used to quantify the degree of discomfort

Calculation of PMV index

 $PMV = (0,303e^{-2,100*M} + 0,028)^{*}[(M-W)-H-E_{c}-C_{res}-E_{res}]$

$$\begin{split} \mathsf{PMV} &= (0,303e^{-2,100*M} + 0,028)^* [58,15^*(\mathsf{M-W}) \\ &-3,05^*10^{-3*} [5733-406,7^*(\mathsf{M-W})-\mathsf{p}_a] - 24,21^* [(\mathsf{M-W})-1] \\ &-10^{-3*} \mathsf{M}^* (5867-\mathsf{p}_a) - 0,0814^* \mathsf{M}^* (34-\mathsf{t}_a) \\ &-3,96^*10^{-8*} \mathsf{f}_{\mathsf{cl}^*} [(\mathsf{t}_{\mathsf{cl}} + 273)^4 - (\mathsf{t}_{\mathsf{eq}} + 273)^4] - \mathsf{f}_{\mathsf{cl}^*} \mathsf{h}_{\mathsf{c},\mathsf{eq}^*} (\mathsf{t}_{\mathsf{cl}} - \mathsf{t}_{\mathsf{eq}})] \end{split}$$

 $h_{c,eq} = 2,38^{*}(t_{cI} - t_{eq})^{0,25} \quad f_{cI} \begin{cases} 1,00+0,2^{*}I_{cI} \text{ for } I_{cI} < 0,5 \text{ clo} \\ 1,05+0,1^{*}I_{cI} \text{ for } I_{cI} > 0,5 \text{ clo} \end{cases}$

M [MET)] Icl [CLO]

PMV and PPD

- PMV-index (Predicted Mean Vote) predicts the subjective ratings of the environment in a group of people.
 - 0 = neutral (still 5% people are dissatisfied)
- PPD-index predicts the number of dissatisfied people.

Predicted percentage dissatisfied (PPD) as a function of predicted mean vote (PMV)

Comfort zones

- defined using isotherms parallel to ET
- ASHRAE comfort zones for summer and winter (for typical indoor and seated person)
- proposed comfort zones
 - within 5 to 16 mm Hg water vapour pressure
 - for summer, 22.8 °C \leq SET \leq 26.1 °C
 - for winter, $20.0 \text{ °C} \leq \text{SET} \leq 23.9 \text{ °C}$

Fig. 5 ASHRAE Summer and Winter Comfort Zones (Acceptable ranges of operative temperature and humidity for people in typical summer and winter clothing during primarily sedentary activity.)

Olgyays bioclimatic chart

Influencing Factors

• Environmental factors:

- Dry-bulb temperature (also related to humidity)
- <u>Relative humidity</u> (or water vapour pressure)
 - Influences evap heat loss and skin wettedness
 - Usually RH between 30% and 70% is comfortable
- <u>Air velocity</u> (increase convective heat loss)
 - Preferable air velocity
- Mean radiation temperature
 - Radiation has great effect on thermal sensation

Influencing Factors

- Other factors affecting comfort:
 - Age
 - Sensation of old people and younger people
 - Adaptation
 - People in warm climates may adapt to hot environment
 - Sex
 - Women: lower skin temp., evap loss & lower met. rate
 - Clothing and perferrence of temp.

What should be Estimated? • Parameters to estimate and calculate are: Estimation of Metabolic rate Met Clo Calculation of Clo-value

Metabolic Rate

- Energy released by metabolism depends on muscular activity.
- Metabolism is measured in Met (1 Met=58.15 W/m² body surface).
- Body surface for normal adult is 1.7 m².
- A sitting person in thermal comfort will have a heat loss of 100 W.
- Average activity level for the last hour should be used when evaluating metabolic rate, due to body's heat capacity.

Met Value Table

Activity	Metabolic rates [M]	
Reclining	46 W/m ²	0.8 Met
Seated relaxed	58 W/m ²	1.0 Met
Clock and watch repairer	65 W/m ²	1.1 Met
Standing relaxed	70 W/m ²	1.2 Met
Car driving	80 W/m ²	1.4 Met
Standing, light activity (shopping)	93 W/m ²	1.6 Met
Walking on the level, 2 km/h	110 W/m ²	1.9 Met
Standing, medium activity (domestic work)	116 W/m ²	2.0 Met
Washing dishes standing	145 W/m ²	2.5 Met
Walking on the level, 5 km/h	200 W/m ²	3.4 Met
Building industry	275 W/m ²	4.7 Met
Sports - running at 15 km/h	550 W/m ²	9.5 Met

Met Value Examples

Met Value Examples

Calculation of Insulation in Clothing

• 1 Clo = Insulation value of 0,155 $m^2 \circ C/W$

Clo Values Table

Garment des	scription	I _{clu} Clo	l _{clu} m² ∘C/W
Underwear	Pantyhose	0.02	0.003
	Briefs	0.04	0.006
	Pants long legs	0.10	0.016
Underwear,	Bra	0.01	0.002
shirts	T-shirt	0.09	0.014
	Half-slip, nylon	0.14	0.022
Shirts	Tube top	0.06	0.009
	Short sleeves	0.09	0.029
	Normal, long sleeves	0.25	0.039
Trousers	Shorts	0.06	0.009
	Normal trousers	0.25	0.039
	Overalls	0.28	0.043
Insulated coveralls	Multi-component filling	1.03	0.160
	Fibre-pelt	1.13	0.175
Sweaters	Thin sweater	0.20	0.031
	Normal sweater	0.28	0.043
	Thick sweater	0.35	0.054

Clo Values Table

Garment des	scription	I _{clu} Clo	l _{clu} m² ∘C/W
Jackets	Vest	0.13	0.020
	Jacket	0.35	0.054
Coats over-	Coat	0.60	0.093
trousers	Parka	0.70	0.109
	Overalls	0.52	0.081
Sundries	Socks	0.02	0.003
	Shoes (thin soled)	0.02	0.003
	Boots	0.10	0.016
	Gloves	0.05	800.0
Skirt,	Light skirt, 15cm above knee	0.10	0.016
dresses	Heavy skirt, knee-length	0.25	0.039
	Winter dress, long sleeves	0.40	0.062
Sleepwear	Shorts	0.10	0.016
	Long pyjamas	0.50	0.078
	Body sleep with feet	0.72	0.112
Chairs	Wooden or metal	0.00	0.000
	Fabric-covered, cushioned	0.10	0.016
	Armchair	0.20	0.032

Calculation of Clo-value (Clo) Insulation for the entire clothing: $I_{cl} = \Sigma I_{clu}$ 0.28 0.19 0.25 0.04 ÷ 0.04 ÷ 0.11 0.25 0.02 0.05 ÷ 0.04 0.02 0.38 0.91

Things to consider when calculation the CLO value

Thermal insulation of chairs

Insulation of wet clothing

Adjustment of Clo Value

Operative Temperature

Influencing Factors

• Adaptive thermal comfort

- People expect different thermal experiences in summer and winter, and modify behaviour accordingly
- Comfort temperature can vary with changing outdoor conditions (esp. for natural ventilation)
 - Can reduce the average indoor–outdoor temperature difference, and consequently reduces energy requirements
 - Comfort in intermediate and outdoor spaces

Adaptation need not be a conscious act, and not only for human

(Source: Nicol, F., Humphreys, M. and Roaf, S., 2012. Adaptive Thermal Comfort: Principles and Practice)

Acclimatisation/Adaptation!

When the air condition system fails you can adapt by adjusting your CLO value

Basic concepts of adaptive thermal comfort

This has to be done within the climatic, social, economic and cultural context of the whole system

What should be measured?

• Parameters to measure are:

- t_a Air Temperature
- t_r Mean Radiant Temperature
- v_a Air Velocity
- pa Humidity

Mean Radiant Temperature

- The Mean Radiant Temperature is that uniform temperature of an imaginary black enclosure resulting in same heat loss by radiation from the person, as the actual enclosure.
- Measuring all surface temperatures and calculation of angle factors is time consuming. Therefore use of Mean Radiant Temperature is avoided when possible.

Environmental Indices

• Environmental index

- Express thermal comfort in a single number by combining 2 or more comfort parameters
- Operative temperature, t_o
 - Uniform temp. of an imaginary enclosure with the same dry heat by R + C as in the actual environment $t_o = \frac{h_r \cdot t_r + h_c \cdot t_{db}}{h_r + h_c}$
 - Weighted sum of t_{db} and t_r :
 - h_r , h_c : heat transfer coefficients

Environmental Indices

• Effective temperature, ET

- Temp. of a still, saturated atmosphere, which would in the absence of radiation, produce the same effect as the atmosphere in question (thus, it combines dry bulb temp. and humidity)
- Represented by a set of equal comfort lines drawn on the psych chart (see ASHRAE Comfort Zone diagrams)
 - A standard set of thermal conditions representative of typical indoor application is used to define a "standard effective temperature (SET)"

Environmental Indices

• Equivalent temperature, EqT

- Also called wind chill equivalent temperature, or wind chill index, or wind chill
- It is the temperature required under no-wind conditions that will equal the cooling effect of the air (the actual air temperature) and the wind on an average size, nude person in the shade

• Combines dry bulb temp., air velocity & MRT

• Humidity, presence of sunshine, clothing, and physical activity are not considered (dry heat loss)

Operative and Equivalent Temperature

Operative temperature

Equivalent temperature

Combines DBT & MRT

Combines DBT, MRT & air velocity

Operative and Equivalent Temperature

Operative temperature

Combines DBT & MRT

Equivalent temperature

Combines DBT, MRT & air velocity

Projected area factor

īt_r = 20 °C

 $\overline{t}_r = 20 \ ^{\circ}C$

Operative Temperature

• The Operative temperature t_o^- integrates the effect of t_a and t_r

• Measure Operative Temperature: the transducer must have same heat exchange properties as an <u>unheated</u> mannequin (artificial human) dummy.

Dry Heat Loss or Equivalent Temperature

• Dry Heat Loss or equivalent temperature can be measured directly, using a <u>heated</u> Operative Temperature shaped transducer.

•The Equivalent temperature t_{eq} integrates the effect of $t_{a,} \ t_{r}$ and v_{a}

• The Dry Heat Loss transducer is heated to the same temperature as the surface temperature of a person's clothing.

Comfort Temperature, t_{co} (typical)

1.7 clo 2.5 Met RH=50% t_{co}=6°C 0.8 clo 2.2 Met RH=50% t_{co}=18°C

0.5 clo 1.2 Met RH=50% t_{co}=24,5°C

Local Thermal Discomfort

Radiation Asymmetry

 Vertical Air Temperature Differences.

 Floor temperature

- Draught is the most common complaint indoors
- What is felt is Heat Loss
- Heat Loss is depending on average Air Velocity, Temperature and Turbulence
- High Turbulence is more uncomfortable, even with the same Heat Loss

Draught

The sensation of Draught depends on the air temperature
At lower air temperatures a higher number will be

dissatisfied

Mean Air Velocity

Evaluating Draught Rate

- Fluctuations in Air Velocity is described by Turbulence Intensity (Tu)
- Draught Rate equation is based on studies of 150 people, and stated in ISO 7730

Radiation Asymmetry

- Radiant Temperature Asymmetry is perceived uncomfortable
- Warm ceilings and cold walls causes greatest discomfort

Vertical Air Temperature Difference

Floor Temperature

- Acceptable floor temperatures ranging from 19 to 29 °C
- The graph is made on the assumption that people wear "normal indoor footwear"

Workplace Measurements

- Measurements of Vertical Temp. difference and Draught at ankle and neck
- Other measurements should be performed at persons centre of gravity

Collection of Thermal Comfort Data

Transducers

- Operative Temperature
- Air Velocity
- Radiant Temperature
 Asymmetry
- Air Temperature
- Humidity
- Surface Temperature
- WBGT
- Dry Heat Loss

An Example

Comfort data logger with comfort transducer:

• Holds 6 Comfort Transducers.

• The Mannequin is shaped as a human body.

•Cut's in body parts allows air movement and radiation to influence measurements.

Further Reading

- Comfort [BSE notes -- Science]
 - http://www.arca53.dsl.pipex.com/index_files/science1.htm
 - What is Thermal Comfort http://www.arca53.dsl.pipex.com/index_files/whatcom.htm
 - Thermal Comfort http://www.arca53.dsl.pipex.com/index_files/thermco.htm
 - Comfort Recommendations <u>http://www.arca53.dsl.pipex.com/index_files/thermco2.htm</u>
 - Thermal Indices <u>http://www.arca53.dsl.pipex.com/index_files/thermco3.htm</u>
 - Comfort Outdoors <u>http://www.arca53.dsl.pipex.com/index_files/outcom.htm</u>

E-learning

- Thermal Comfort Tool for ASHRAE-55 (UC Berkeley) <u>http://cbe.berkeley.edu/comforttool/</u>
 - CBE Thermal Comfort Tool for ASHRAE 55 -- Overview (5:29) <u>http://www.youtube.com/watch?v=S3KXjUuKCAQ</u>
 - CBE Thermal Comfort Tool for ASHRAE 55 -- Adaptive method (3:35) <u>http://www.youtube.com/watch?v=oWjIMuS-Q8w</u>
 - CBE Thermal Comfort Tool for ASHRAE 55 -- Local discomfort assessment (1:56) <u>http://www.youtube.com/watch?v=IV9m51HQq44</u>
 - CBE Thermal Comfort Tool for ASHRAE 55 -- LEED documentation (3:21) <u>http://www.youtube.com/watch?v=gNNYRo3D4GA</u>