SPD5141 Building Services System Design http://ibse.hk/SPD5141/

Green Building Design and Assessment

Ir. Dr. Sam C. M. Hui Faculty of Science and Technology E-mail: cmhui@vtc.edu.hk

Mar 2017

• What is green building?

• Design strategies

• Green building assessment

Assessment tools

Kyoto Face House, 1998

What is green building?

- Green buildings are
 - Energy and resource efficient
 - Non-wasteful and non-polluting
 - Sustainable design that helps minimise broad environmental impacts (e.g. ozone depletion)
 - Highly flexible and adaptable for long-term functionality
 - Easy to operate and maintain (lower running costs)
 - Supportive of the productivity and well-being of the occupants

What is green building?

- It involves a *holistic* approach to the design and operation of buildings. It considers:
 - 1) Economy and efficiency of resources
 - 2) Life cycle design
 - 3) Human well-being
- Main objectives

- Be environmentally friendly and responsible
- Improve the quality of built environment

Resource and material flow in the building ecosystem

Building life cycle and sustainable construction

What is green building?

- Principles of sustainable building design
 - Optimize site potential
 - Optimize energy use
 - Protect and conserve water
 - Optimize building space and material use
 - Enhance indoor environmental quality (IEQ)
 - Optimize operational and maintenance practices
 - "If it is not maintainable, it is not sustainable"
 - Also, sustainable retrofits and adaptability

(See also: Sustainable (Whole Building Design Guide) <u>http://www.wbdg.org/design-objectives/sustainable</u>)

- Green building design strategies
 - Urban and site design
 - Energy efficiency
 - Renewable energy
 - Building materials
 - Water issues
 - Indoor environment

- <u>Sustainable urban design</u> should consider:
 - Spatial form
 - Movement
 - Design & development
 - Energy
 - Ecology
 - Environmental management
- Goal: to create <u>livable cities</u>

• Design issues:

棕地,指被棄置的工業或商業 用地而可以被重複使用的土地

- Site selection (e.g. prefer brownfield site*)
- Promote efficient movement network & transport
- Control & reduce noise impacts
- Optimise natural lighting & ventilation
- Design for green space & landscape
- Minimise disturbance to natural ecosystems
- Enhance community values
- [* Brownfield sites are abandoned or underused industrial and commercial facilities available for re-use.]

• Energy efficiency strategies:

ন্য

- Minimise thermal loads & energy requirements
 - e.g. by reducing heat gains from equipment
- Optimise window design & fabric thermal storage
 - Integrate architectural & engineering design
- <u>Promote</u> efficiency in building services systems
 - Use of heat recovery & free cooling methods
 - Energy efficient lighting design & control
 - High-efficiency mechanical & electrical systems

Adopt total energy approach (e.g. district cooling, combined heat & power)

ÿ;

- Renewable Energy
 - Energy that occurs <u>naturally</u> and <u>repeatedly</u> on earth and can be harnessed for human benefit
- Common applications
 - Solar hot water
 - Solar photovoltaic
 - Wind energy
 - Geothermal
 - Small hydros

Passive solar (e.g. skylight)

Active solar (solar hot water)

Photovoltaics

Integration of solar energy systems in buildings

Ο

- Renewables for buildings
 - Solar energy
 - Passive (low energy architecture)
 - Active (solar thermal)
 - Photovoltaics
 - Other renewables
 - Wind (using buildings to harvest wind energy)
 - Geothermal (e.g. hot springs)
 - Small hydros (e.g. water wheels)
 - Hybrid systems (e.g. PV + wind + diesel)

- What makes a product/material green?
 - Measured by their environmental impact
 - Life cycle of a sustainable material
 - Using local, durable materials
- Embodied energy* 能源含量
 - 'Lifetime' energy requirement of a material
 - Energy input required to quarry, transport and manufacture the material, plus the energy used in the construction process

[* http://en.wikipedia.org/wiki/Embodied_energy]

- Material conservation
 - Adapt existing buildings to new uses
 - Material conserving design & construction
 - Size buildings & systems properly
 - Incorporate reclaimed or recycled materials
 - Use environment-friendly materials & products
 - Design for deconstruction ("close the loop")
- Life cycle assessment (LCA) is often used to evaluate the environmental impact of building materials and products

Stormwater or watershed protection

- Control rainwater runoff, flooding and erosion
 - Preservation of soils and drainage ways
 - Porous paving materials
 - Drainage of concentrated runoff
- Avoid pollution and soil disturbance
- Water efficiency and conservation
 - Saving of water and money: water-use charge, sewage treatment costs, energy use, chemical use

- Design strategy for water efficiency
 - <u>Reduce</u> water consumption
 - Low-flush toilets & showerheads
 - Leak detection & prevention
 - Correct use of appliances (e.g. washing machine)
 - <u>Reuse</u> and <u>recycle</u> water onsite
 - Rainwater collection & recycling
 - Greywater recycling (e.g. for irrigation)
 - No-/Low-water composting toilet

- Indoor environmental quality (IEQ)
 - Indoor air quality
 - Ensure health & well-being
 - Visual quality
 - Provide daylight & comfortable conditions
 - Acoustic quality
 - Noise control
 - Controllability
 - Allow occupant control over thermal & visual

- Indoor air quality (IAQ)
 - People spend most of their time indoors
 - Pollutants may build up in an enclosed space
 - Effects on health and productivity
- Control methods
 - Assess materials to avoid health hazards
 - Such as volatile organic compounds (VOC)
 - Ensure good ventilation & building management

Four principles of indoor air quality design

(Source: PTI, 1996. Sustainable Building Technical Manual)

Green building assessment

- <u>Design guidelines</u> provide a broader range of issues; <u>Assessment methods</u> give structure and priority, and provide strategic advice
 - Enhance environmental knowledge
- Enable *building performance* to be described
 - Performance-based indicators
 - Declared benchmarks
 - Prescriptive requirements (proxies for actual performance)

Green building assessment

- A broad range of criteria
 - Qualitative issues
 - Quantitative issues
- Types of criteria
 - Ecological vs health-related
 - Direct impacts *vs* indirect impacts
 - Immediate *vs* long-term implications
 - Global vs local

Rating tools of building environmental performances around the world

(Adapted from CASBEE in Progress for Market Transformation in Japan, by Prof. Kazuo Iwamura, Tokyo City University)

Assessment tools

- LEED Green Building Rating System
 - Leadership in Energy & Environmental Design
 - By US Green Building Council
 - Current LEED systems:
 - New construction (LEED-NC)
 - Existing buildings operations & maintenance (LEED-EBOM)
 - Commercial interiors (LEED-CI)
 - Core and shell (LEED-CS)
 - Homes
 - Schools, Healthcare, Retail
 - Neighborhood development (LEED-ND)

LEED Green Building Rating

(Source: USGBC)

(See also: Introducing LEED v4 (1:34) <u>http://www.youtube.com/watch?v=UJzdnykumTU</u>)

LEED[®] for New Construction

Total Possible Points** 110*

	😚 Sustainable Sites	26
	Water Efficiency	10
	😂 Energy & Atmosphere	35
1	Materials & Resources	14
	Indoor Environmental Quality	15

- * Out of a possible 100 points + 10 bonus points
- ** Certified 40+ points, Silver 50+ points, Gold 60+ points, Platinum 80+ points

LEED[®] for Existing Buildings

Total Possible Points** 110* Sustainable Sites 26 Water Efficiency 14 Energy & Atmosphere 35

- Materials & Resources 10
 Indoor Environmental Quality 15
- * Out of a possible 100 points + 10 bonus points
- ** Certified 40+ points, Silver 50+ points, Gold 60+ points, Platinum 80+ points

For LEED version 3

(Source: USGBC)

LEED NC point distribution (version 2009)

(Source: USGBC)

Assessment tools

- LEED v4 (launched in 2014)*
 - Location & Transportation (LT)
 - Sustainable Site (SS)
 - Water Efficiency (WE)
 - Energy and Atmosphere (EA)
 - Materials and Resources (MR)
 - Indoor Environmental Quality (EQ)
 - Innovation (IN)
 - Regional Priority (RP)

(* See also <u>http://new.usgbc.org/leed/v4</u>)

Assessment tools

• The BEAM Plus Family

http://www.hkgbc.org.hk/eng/BEAMPlus.aspx

New Buildings (NB): New building projects and major renovation/alteration works on existing buildings

Existing Buildings (EB): Operation and maintenance performance of existing buildings

Interiors (BI): Fit-out works of non-domestic premises

BEAM Plus assessment criteria [credits] [weighting]

New Buildings	Existing Buildings
Site aspects (SA) [22+3B] [25%]	Site aspects (SA) [18+1B] [18%]
Materials aspects (MA) [22+1B] [8%]	Materials aspects (MA) [11+2B] [12%]
Energy use (EU) [42+2B] [35%]	Energy use (EU) [39+2B] [30%]
Water use (WU) [9+1B] [12%]	Water use (WU) [7+2B] [15%]
Indoor environmental quality (IEQ) [32+3B] [20%]	Indoor environmental quality (IEQ) [30+3B] [25%]
Innovations and additions (IA) [5B+1]	Innovations and additions (IA) [5B+1]

(Source: http://www.beamsociety.org.hk)

Assessment tools BEAM Plus (Version 1.1 or 1.2) 										
	Overall	Aspects	Use	IEQ	Addn.					
Platinum	75%	70%	70%	70%	3 credits	Excellent				
Gold	65%	60%	60%	60%	2 credits	Very Good				
Silver	55%	50%	50%	50%	1 credit	Good				
Bronze	40%	40%	40%	40%		Above Average				

Assessment tools

- BEAM Professionals (BEAM Pro)
 - Accredited by HK Green Building Council (HKGBC) (www.hkgbc.org.hk)
 - Facilitate BEAM Plus submission
- BEAM Assessors (BAS)
 - Undertake the building assessment on behalf of HKGBC
- Green Building Faculty
 - Experienced professionals to drive BEAM Plus & BEAM Professionals development and training
- BEAM Affiliate (BA)
 - Sub-professionals to support green building design, construction and operations

Assessment tools

- Useful information:
 - BEAM Plus Online Exhibition
 - <u>http://greenbuilding.hkgbc.org.hk/</u>
 - Statistics of BEAM Plus projects
 - http://www.hkgbc.org.hk/eng/BEAMPlusStatistics.aspx
- Latest developments
 - Version 2.0 of BEAM Plus NB and EB
 - BEAM Pro Specialty (starting from 1 Jan 2017)

Further Reading

- Green Building Standards and Certification Systems [WBDG]
 - http://www.wbdg.org/resources/gbs.php
- Introduction to LEED Rating Systems | by Green Building Academy (21:30)
 - <u>http://www.youtube.com/watch?v=hZoPENko-6U</u>
- BEAM Plus Project Assessment
 - http://www.hkgbc.org.hk/eng/BEAMPlus.aspx