MECH4429 Integrated Capstone Experience

Capstone Project for Building Services Engineering http://me.hku.hk/bse/capstone/

Building Services Systems for Adaptive Re-use of Eliot Hall and May Hall

Semester 2: Technical Analysis

This Capstone Project provides students good opportunities to appreciate the building design process in Semester 1. To enable students to develop further the skills for problem solving and independent research, each student will identify a suitable topic or area to carry out technical analysis in Semester 2 for investigating the building design solutions, building performance or other related technical or environmental issues. Students are expected to develop individual study and writing skills in the technical analysis.

1. Possible Topics of Technical Analysis

Students have the freedom to select or propose a suitable topic of technical analysis. The proposed topic should be confirmed with the tutors before commencing. Students are encouraged to discuss with the tutors about how to select and formulate a suitable topic. The possible topics of technical analysis are shown in Table 1. This list is not exhaustive and students may suggest other topics related to building services engineering and the main theme of the Capstone Project.

Normally, the student should first identify one or two areas/topics that he/she is most interested in. Then, the student can develop a title for the study and propose the main study objective(s) for the technical analysis. He/she should send the information to the tutors and discuss how to formulate a suitable topic (**Deadline for submitting topic: 30 Nov 2015**). The tutors will give advice and then confirm the topic if satisfactory.

When doing the technical analysis in Semester 2, project meetings, seminars, technical visits will be arranged to allow students to interact and discuss with the design tutors or other professionals. This will enhance their understanding and arouse their interest in the analysis process. Details of these activities will be provided during the course.

2. Requirements and Process of Technical Analysis

Students are encouraged to apply fundamental principles in the technical analysis and promote creativity and innovation in the study. They may also relate and apply the knowledge they have learnt from other subjects for developing the analysis. At the end of the technical analysis, the students are required to write a full report comprising of all the work that have been done. They are also required to present their findings orally in English.

The students are expected to show that they are able to work independently, solve problems, adapt to various situations, and have self-confidence. The study enables students to enhance their generic skills through various means such as discussion with lecturer/supervisor and professionals from industries, self-learning, writing report, and oral presentation. Sometimes students may work in a group whereby they can help each other. It is emphasized that during the technical analysis process students are required to produce their own original data. Any means of plagiarism is strictly prohibited.

The technical analysis should be carried out in a systematic way and the following steps are suggested for managing the study process. Students should manage their time and plan all activities related to the study in order to finish the work within the given time limit.

- Literature Study (3 weeks)
- Methodology (2 weeks)
- Technical Analysis (4 weeks)
- Report Writing (4 weeks)

Table 1. Possible topics of technical analysis

Table 1. Possible topics of technical analysis	One and exertain able buildings
Climate and solar conditions:	Green and sustainable building:
Bioclimatic analysis	• Carbon analysis
Climate analysis	Green building assessment analysis
 Site analysis (detailed) 	 Green roof design and analysis
Solar load analysis	 Life cycle analysis
 Sun and shading analysis 	 Life cycle cost analysis
 Wind and air flow analysis 	 Passive design strategy analysis
	 Solar photovoltaic system analysis
Construction methods and project management:	 Solar hot water system analysis
 Building cost analysis 	 Sustainability analysis
 Building information modelling BIM analysis 	 Wind energy system analysis
 Critical path network analysis 	
 Economic analysis 	HVAC systems:
 Value engineering analysis 	 Building thermal load analysis
	 Building energy analysis
Electrical services systems:	 Heat recovery system analysis
 Electrical fault analysis 	 HVAC control analysis
Harmonic analysis	 HVAC system performance analysis
 Motor starting analysis 	 Indoor airflow analysis
 Protective device coordination analysis 	 Indoor air quality analysis
 Power flow and power factor analysis 	 Passive systems integration analysis
 Short circuit analysis 	Thermal comfort analysis
 Switching transient modelling and analysis 	 Ventilation system analysis
Energy efficiency in buildings:	Lighting systems:
 Building energy code analysis 	Daylighting analysis
 Building energy management analysis 	Indoor lighting analysis
Building energy metering analysis	 Lighting energy and cost analysis
 Building energy performance analysis 	Outdoor lighting analysis
Building energy simulation analysis	
 Energy analysis of building envelope 	Plumbing and drainage systems:
Life cycle energy analysis	Analysis of building drainage vent systems
	 Analysis of hot water system
Fire services and security systems:	Plumbing system analysis
Analysis of fire alarm and detection systems	Rainwater harvesting system analysis
Analysis of fire engineering approach	Siphonic roof drainage system analysis
Analysis of fire sprinkler system	Water demand and consumption analysis
Analysis of smoke extraction system	······································
Analysis of staircase pressurization system	Vertical transportation systems:
• Escape and emergency evacuation analysis	 Analysis of lift energy consumption
• Fire response analysis	• Lift traffic simulation analysis
• Fire risk/hazard analysis	• Lift system analysis
Security design and risk analysis	Performance analysis of lift systems

3. Assessment Methods

The assessment in Semester 2 constitutes 50% of the total course marks and will be based on the following components:

Semester 2 oral presentation (10 min. presentation + 5 min. Q&A) = 10 marks Semester 2 technical report (max. 100 nos. A4 pages including everything) = 40 marks

Submissions of reports should be punctual. Late submission may receive reduction in marks. Assessment of the study results is based on the following criteria: (a) object and methodology, (b) working attitude, (c) creativity, (d) achievement, (e) written report and (f) oral presentation.

4. Useful Guidelines

(a) Select or propose a topic:

Generating ideas & forming a question (University of Reading) http://me.hku.hk/bse/capstone/A5_Dissertations_1.pdf

(b) Literature review and study:

How to undertake a literature search and review: for dissertations and final year projects (DMU) http://me.hku.hk/bse/capstone/LiteratureSearch.pdf

Literature Review: Academic Tip Sheet (Edith Cowan University) <u>http://me.hku.hk/bse/capstone/literature_review.pdf</u>

(c) Referencing:

Referencing: Why, when and how (Lincoln University) http://me.hku.hk/bse/capstone/Referencing why when how 2008.pdf

(d) Report organisation and planning:

Features of good reports (University of Reading) http://me.hku.hk/bse/capstone/A5_Reports_1.pdf

Structuring your report (University of Reading) http://me.hku.hk/bse/capstone/A5_Reports_2.pdf

(e) Report writing:

Writing a research report (RMIT) http://me.hku.hk/bse/capstone/research_report.pdf

Writing critically (Lincoln University) http://me.hku.hk/bse/capstone/writing_critically_2008.pdf

(f) Oral presentation:

Oral presentations (RMIT) http://me.hku.hk/bse/capstone/oral_presentations.pdf