GREEN BUILDING DESIGN STRATEGIES #### SUSTAINABLE SITE #### Site selection - Locate near public transit - Locate on infill or brownfield site ## Site treatment and landscaping - Assess existing ecosystem and minimize their disturbance - Use plantings to stabilize soils and control erosion - Landscape using indigenous or edible plants - Plant trees to shade building and vehicles - Minimize stormwater runoff - Plan landscape before the building #### **Building placement** - Site buildings and infrastructure to reserve undeveloped land - Provide access and facilities for pedestrian and bicycle users - Place building to integrate with the community #### **Quality of exterior** - Use porous material for paving - Reduce paved areas - Use light-colored roof and paving materials to reduce heat island effect - Design living roof system - Encourage shared parking - Reduce light pollution #### **ENERGY AND ATMOSPHERE** # **Energy source** - Use renewable energy sources - Use Green Power - Orient the building to maximize the use of the sun, shading and trees #### Mechanical systems and controls - Design mechanical systems for appropriate use patterns and locate in areas accessible for maintenance and service - High-efficiency mechanical and electrical systems - Integrate systems wherever possible - Commission the building - Use integrated methods/mechanisms to track energy use - Plan for ongoing optimization of building energy and IAQ performance - Use intelligent controls for electric systems - Allow varied light levels for different tasks #### Other - Use reflective, suspended ceilings - Super insulation/tight construction - Design the building to prevent infiltration - Reduce CFCs in HVAC&R systems #### WATER EFFICIENCY - Water efficient landscaping - Collect and store rainwater for uses in building - Use a graywater system - Specify composting toilets and/or waterless urinals - Use low-flow water fixtures - Use an alternative wastewater system ### MATERIALS AND RESOURCES - Reuse an existing building - Manage construction waste for minimize landfill contribution #### Design - Design for standard sizes - Design for disassembly at end of life - Include composting facilities - Design for occupant recycling program #### **Material selection** - Reuse materials - Select materials w/ recycled content - Select renewable/rapidly renewable materials - Select low embodied energy use materials - Select local/regional material - Select climate appropriate materials - Use wood products from sustainable forests ## INDOOR ENVIRONMENTAL QUALITY #### **Air Quality** - Ongoing air monitoring - Increased natural ventilation - IEQ management plan during construction - Select low VOC/nonirritant materials - Ensure good ventilation during high VOC-source applications - Design building to minimize condensation and water vapor - Design duct work to allow access for cleaning - Allow for occupant control of personal environment and access to operable windows - Plan for use of nontoxic cleaners/procedures - Design isolated storage closet for cleaning and maintenance products - Locate building away from external pollution sources #### Light quality - Split task and ambient lighting - Use daylight #### Other - Design for acceptable acoustic qualities - Avoid electromagnetic fields - Radon abatement # **GREEN STRATEGIES AT DIFFERENT STAGES** | Stage | Issues | |-----------------------------------|--| | INCEPTION | Briefing: identify green design as an issue to be considered Agree environmental performance targets for the building Prefer brownfield to Greenfield sites | | DESIGN Preliminary Studies | Analyse site for sunlight, shelter and available shading Research the building type and analyse good practice examples Consider what is achievable given the cost constraints | | Sketch Studies | Site layout: use passive solar strategies, including daylight Provide solar access to residential living spaces Use thermal mass to dampen temperature fluctuations Maximise daylight penetration using plan and section Consider water supply and waste handling methods Use locally produced materials Make iterative studies of design concepts to assess performance | | Pre-Project | Consider room heights for cooling, heating and daylighting Consider thermal mass for building use pattern: intermittent or continuous Optimise proportion and distribution of external envelope openings with cooling and lighting in mind Specify design criteria for services Calculate predicted building performance and assess against targets | | Basic Project | Finalise layout (plans, sections, elevations) for statutory approvals: implications for daylight/ventilation/passive and active systems Select materials and construction methods having regard to thermal mass, openings and shading, sourcing of materials | | Execution of Project | Develop specifications for good workmanship and site management Detail for thermal performance, daylight, controlled ventilation Specify window and external door frames for environmental performance Consider internal and external finishes for environmental friendliness Consider environmental performance in selection of cooling and heating plant, equipment, and control devices Specify electrical lighting equipment and controls for lowest consumption Specify sanitary fittings for low water consumption | | CONSTRUCTION Tender Procedure | Explain the requirements of green design to tendering contractors Specify more demanding construction practices and tolerances | | Supervision | Protect the natural landscape of the site as much as possible Ensure completeness of insulation coverings and no thermal bridging at openings Contractor should not substitute materials or components without approval Ensure acceptable methods of waste disposal | | Acceptance | Make sure client and users understand building concepts and systems (provide maintenance manuals) Show how to get maximum value from the active systems controls | | Defects Liability Period | • Monitor active systems for actual as against projected performance | | MAINTENANCE AND REFURBISHMENT | Use green finishes materials where these were originally applied Use environmentally-acceptable cleaning and sanitation materials Undertake energy audit prior to commencing project Survey the potential for upgrading of active services Survey the potential for upgrading of envelope Consider indoor air quality and healthy building environment | Adapted from: European Commission, Directorate General XVII for Energy, 1999. *A Green Vitruvius: Principles and Practice of Sustainable Architectural Design*, James & James, London. [720.47 G79 E]