Design of High Performance Green Buildings: Opportunities and Challenges

高效能綠色建築設計: 機遇與挑戰

Dr. Sam C. M. Hui
Department of Mechanical Engineering
The University of Hong Kong
E-mail: cmhui@hku.hk

香港大學機械工程系 許俊民 博士
Contents

• What is green building?
• Why going green?
• ASHRAE Standard 189.1
• Opportunities
• Challenges
• Conclusions
Acknowledgments

- ASHRAE Headquarters

- Mr. Kent W. Peterson
 - Past Chairman of ASHRAE Standard Project Committee 189.1 (SPC 189.1)
 - ASHRAE Past President
“What is green building?”
An example of green building in Hong Kong ?!

(Photo taken by Dr Sam C M Hui)
Green building is NOT just adding a green outlook

(Photo taken by Dr Sam C M Hui)
What is green building?

- It is a structure that is **environmentally responsible** and **resource-efficient** throughout its **life-cycle**.
- Green buildings are designed to reduce the overall impact of the built environment on human health and the natural environment by:
 - Efficient use of energy, water, and other resources
 - Protecting occupant health and improving employee productivity
 - Reducing waste, pollution and environment degradation
Resource and material flow in the building ecosystem

Upstream
- Bldg. materials
- Energy/fuels
- Fresh water
- Consumer goods
- Solar radiation
- Wind
- Rain

Downstream
- Used materials
- Combustion by-product
- Waste water
- Garbage
- Heat
- Polluted air
- Ground water
Construction process and building life cycle (cradle-to-grave)
What is green building?

• Green buildings are
 • Energy and resource efficient
 • Non-wasteful and non-polluting
 • Sustainable design that helps minimise broad environmental impacts (e.g. ozone depletion)
 • Highly flexible and adaptable for long-term functionality
 • Easy to operate and maintain (lower running costs)
 • Supportive of the productivity and well-being of the occupants
"It's not easy being green." -- Kermit the Frog, 1972.

Why going green?
Why going green?

- Survival of our planet: environmental crisis
 - Air (destruction of Earth’s atmosphere)
 - Global warming, climate change
 - Water (an undervalued resource)
 - Shortage and pollution
 - Fire (the problem of fuels)
 - Fossil fuel burning (coal, oil)
 - Earth (resources and materials)
 - Resources depletion
SUSTAINABLE DEVELOPMENT
If all countries have ecological footprints same as current industrialized ones, we need four earth planets to support the living.
Why going green?

- Green buildings pay
 - Direct benefits (e.g. energy/cost savings)
 - Indirect benefits (e.g. healthier conditions)
 - Wider global benefits (e.g. reduced CO₂ emission)
- Life-cycle benefits
 - Total economic and environmental performance
 - Long-term “sustainability”
Why going green?

- Green building incentives, such as, in Hong Kong, exemptions of gross floor area (GFA) and site coverage (SC)
 - Joint Practice Notes No. 1 & 2: Green and Innovative Buildings
 - Practice Note APP-151, Building Design to Foster a Quality and Sustainable Built Environment
 - Practice Note APP-152, Sustainable Building Design Guidelines
Why going green?

- Promoted by building energy efficiency codes and guidelines, such as
 - In Hong Kong: the Building Energy Codes under the Buildings Energy Efficiency Ordinance
 - In Macau: the Macau Building Energy Optimisation Technical Guidelines (澳門建築物能耗優化技術指引)
Why going green?

- What happens when Green becomes code?
 - Overseas experience: mandatory codes

CALGreen 2010 Green Building Standards Code

International Green Construction Code (IgCC)
ASHRAE Standard 189.1

• What is Standard 189.1?
 • A standard developed in model code language
 • Provides minimum requirements for high-performance, green buildings
 • Applies to all buildings except low-rise residential buildings (same as ASHRAE Standard 90.1)
 • Optional compliance path to the International Green Construction Code (IgCC)
 • Not a design guide, not a rating system
ASHRAE Standard 189.1

- It is jointly developed by:
 - ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers)
 - USGBC (U.S. Green Building Council)
 - IESNA (Illuminating Engineering Society of North America)
- It is also approved by American National Standards Institute (ANSI)
ASHRAE Standard 189.1

• Goals for Standard 189.1
 • Establish mandatory criteria in all topic areas
 • One “challenge” is existing green building rating systems contain few mandatory provisions
 • Provide simple prescriptive compliance options
 • Provide flexible performance compliance options
 • Complement green building rating programs
 • Standard is not intended to compete with green building rating programs (e.g. LEED)
Standard 189.1 building blocks

(Source: Mr. Kent W. Peterson)
Compliance paths of Standard 189.1

Mandatory + Prescriptive Path
(simple option, very few calculations)

Mandatory + Performance Path
(more options, but more effort)

(Source: Mr. Kent W. Peterson)
ASHRAE Standard 189.1

- Standard 189.1 topic areas:
 - SS Sustainable Sites
 - WE Water Use Efficiency
 - EE Energy Efficiency
 - IEQ Indoor Environmental Quality
 - MR Building’s Impact on the Atmosphere, Materials & Resources
 - CO Construction and Operations Plans
ASHRAE Standard 189.1

- Sustainable Sites Highlights
 - Site selection
 - Allowable sites (e.g. brownfield)
 - Prohibited development activity
 - Reduce heat island effect
 - Site hardscape
 - Wall and roof
 - Reduce light pollution
 - Outdoor lighting
 - Light trespass limits
ASHRAE Standard 189.1

- **Water Use Efficiency Highlights**
 - Site water use
 - Bio-diverse plantings, hydrozoning, and smart irrigation controllers
 - Building water use
 - Plumbing fixtures & fittings, appliances, HVAC systems & equipment
 - Cooling tower maximum cycles of concentration
 - Water measurement for building and subsystems
Building Energy Codes (e.g. ASHRAE 90.1)

(Source: Mr. Kent W. Peterson)
ASHRAE Standard 189.1

- Energy Efficiency Highlights
 - More stringent than Standard 90.1-2007
 - Equipment efficiency compliance
 - Includes plug/process loads
 - Electric peak load reduction
 - Renewable energy provisions
 - On-site renewable energy systems
 - Energy measurement for verification
ASHRAE Standard 189.1

- Indoor Environmental Quality Highlights
 - Indoor air quality
 - Ventilation rates per ASHRAE Standard 62.1
 - Outdoor air flow rate monitoring of min. outside air
 - MERV 8 filter (MERV 13 in PM2.5 non-attainment areas)
 - No smoking inside building
 - Source contaminant control
 - Daylighting
 - Acoustical control
ASHRAE Standard 189.1

- The Building’s Impact on the Atmosphere

 Highlights

 - Construction waste management
 - Reduced impact materials
 - Wood products
 - Refrigerants
 - Storage and collection of recyclables and discarded goods
ASHRAE Standard 189.1

- Construction and Operation Highlights
 - Acceptance testing / commissioning
 - IAQ construction management plan
- Plans for Operation
 - High-performance building operation
 - Maintenance
 - Service life
 - Transportation management
Opportunities

• Global trends – green building: there are significant and growing opportunities
 • Such as green building services and products
• Green building is being adopted at dramatic rates in every region of the world, e.g. China, India and Middle East
• A priority for Mainland China is to encourage green building and energy efficiency
LEED registered projects in international market

<table>
<thead>
<tr>
<th>Country</th>
<th># Projects</th>
<th>Floor area (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>India (Includes IGBC data on LEED India)</td>
<td>1554</td>
<td>964,673,465</td>
</tr>
<tr>
<td>Canada (Includes CaGBC data on LEED Canada)</td>
<td>3768</td>
<td>766,416,439</td>
</tr>
<tr>
<td>China (incl. HK, Macau, and Taiwan)</td>
<td>690</td>
<td>593,888,157</td>
</tr>
<tr>
<td>UAE</td>
<td>748</td>
<td>483,227,607</td>
</tr>
<tr>
<td>Korea</td>
<td>139</td>
<td>249,356,337</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>119</td>
<td>108,233,338</td>
</tr>
<tr>
<td>Brazil</td>
<td>327</td>
<td>105,651,273</td>
</tr>
<tr>
<td>Mexico</td>
<td>214</td>
<td>61,021,544</td>
</tr>
<tr>
<td>Germany</td>
<td>195</td>
<td>45,792,706</td>
</tr>
<tr>
<td>Qatar</td>
<td>92</td>
<td>31,299,005</td>
</tr>
</tbody>
</table>

Opportunities

• Market sectors
 • Residential buildings
 • Commercial buildings
 • Public sector buildings
 • Industrial buildings

• Market drivers
 • The issue of climate change, energy efficiency, carbon emission reduction, energy price, government policies and legislation
Opportunities

• Major technology demand
 • Energy efficient lighting, HVAC systems, building controls & energy management, solar energy systems (e.g. PV), green building materials, water efficiency systems

• Green building services
 • Architectural and engineering services, urban planning & design, specialised green building consultancies, energy efficiency consultancies
Opportunities

- Key areas for green specialist advices
 - Building structure
 - Envelope design
 - Lighting services
 - Electrical power
 - Cooling and heating engineering
 - Water services
 - Ventilation
 - Cost estimating
 - Landscaping
Opportunities

• Growing importance of green building assessment/rating and certification, such as:
 • LEED (USA)
 • BEAM Plus (HK)
 • China 3-star Standard (China)
 • BREEAM (UK)
 • CASBEE (Japan)
 • BCA Green Mark (Singapore)
 • Green Building Label (Taiwan)
Green building assessment and certification
Opportunities

- LEED Green Building Rating System
 - Leadership in Energy & Environmental Design
 - By US Green Building Council
 - Current LEED systems:
 - New construction & major renovation (LEED-NC)
 - Existing building operations (LEED-EB)
 - Commercial interiors projects (LEED-CI)
 - Core and shell projects (LEED-CS)
 - Schools, Retail, Healthcare, Homes
 - Neighborhood development (LEED-ND)
Opportunities

- LEED Green Building Rating System
 - Evaluates and recognizes performance in accepted green design categories, including:
 - Sustainable sites
 - Water efficiency
 - Energy and atmosphere
 - Materials and resources
 - Indoor environmental quality
 - Innovation credits
 - Website: www.leedbuilding.org
<table>
<thead>
<tr>
<th>Category</th>
<th>Possible Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustainable Sites</td>
<td>26</td>
</tr>
<tr>
<td>Water Efficiency</td>
<td>10</td>
</tr>
<tr>
<td>Energy & Atmosphere</td>
<td>35</td>
</tr>
<tr>
<td>Materials & Resources</td>
<td>14</td>
</tr>
<tr>
<td>Indoor Environmental Quality</td>
<td>15</td>
</tr>
<tr>
<td>Innovation in Design</td>
<td>6</td>
</tr>
<tr>
<td>Regional Priority</td>
<td>4</td>
</tr>
</tbody>
</table>

For LEED version 3

(Source: USGBC)

Total Possible Points: **110**

* Out of a possible 100 points + 10 bonus points

Certified 40+ points, Silver 50+ points, Gold 60+ points, Platinum 80+ points
Opportunities

• BEAM Plus (launched 2009)
 • Version 2009: (start 1 Apr 2010)
 • BEAM Plus for New Buildings
 • BEAM Plus for Existing Buildings
 • Criteria [weighting]
 • Site aspects (SA) [25%]
 • Materials aspects (MA) [8%]
 • Energy use (EU) [35%]
 • Water use (WU) [12%]
 • Indoor environmental quality (IEQ) [20%]
 • Innovations & additions (IA) [credits 0-3]
Opportunities

- **BEAM Plus** (launched 2009)
 - **Overall grade**: (with min. for SA, EU and IEQ)

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>Site Aspects</th>
<th>Energy Use</th>
<th>IEQ</th>
<th>Innov. & Addn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum</td>
<td>75%</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
<td>3 credits</td>
</tr>
<tr>
<td>Gold</td>
<td>65%</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>2 credits</td>
</tr>
<tr>
<td>Silver</td>
<td>55%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>1 credit</td>
</tr>
<tr>
<td>Bronze</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
<td>---</td>
</tr>
</tbody>
</table>
Note: CEPAS = Comprehensive Environmental Performance Assessment Scheme

(Source: Buildings Department, HK)
Challenges

• Main market barriers
 • High initial installation costs
 • No proper definition for green building concept
 • Separated interests of developers & building users
 • Short investment horizon & payback periods
 • Lack of reliable information & support
 • Slow progress in renewable energy sources
 • Uncertainty about green building performance
The complex value chain in the building sector

Challenges

- Green building design involves
 - Holistic approach (whole systems thinking)
 - Each aspect is considered in relation to all others
 - Interdisciplinary efforts
 - Understanding & contribution from all involved
 - Understanding of building performance
 - Assessment & evaluation of performance
 - Caring for people
 - Well being of the occupants and users
Green Building 綠色建築
Challenges

• Major concerns
 • Conserve non-renewable energy & scarce materials
 • Minimise life-cycle ecological impact
 • Use renewable energy and materials that are sustainably harvested
 • Protect & restore local air, water, soils, flora and fauna
 • Support pedestrians, bicycles and mass transit
 • Reduce human exposure to noxious materials
Building life cycle and sustainable construction

Design

Construction

Operation & maintenance

Demolition/Disposal

Energy issues
- Efficiency
- Renewable

Water conservation
- Reduce
- Recycle

Designers

Contractors

Users

Materials and systems
- Reduce
- Select

Waste management
- Recycle
- Reuse
Challenges

• How to achieve Green Building?
 • 1. Planning and design
 • 2. Energy efficiency
 • 3. Water efficiency and conservation
 • 4. Material conservation and resource efficiency
 • 5. Environmental quality
Challenges

- Green building design strategies
 - Urban and site design
 - Energy efficiency
 - Renewable energy
 - Building materials
 - Water issues
 - Indoor environment
 - Integrated building design
Site analysis and understanding of the environmental factors is important.
Advanced Energy Design Guides
www.ashrae.org/freeaedg

Now Available for Free Download from ASHRAE
Major factors contributing to indoor air quality (IAQ)

- Particulates
- Biological contaminants
- Volatile organic compounds

Construction materials
Building envelope
Furnishings
Equipment
Ventilation systems
Maintenance
Occupants
Electro-magnetic fields
Site

Challenges

- WBDG - The Whole Building Design Guide
 - www.wbdg.org
- Two components of whole building design:
 - Integrated design approach
 - Integrated team process
- A holistic design philosophy
 - Holism + Interconnectedness + Synergy
 - “The whole is greater than the sum of its parts”
Elements of Integrated Design

- Emphasize the integrated process
- Ensure requirements and goals are met (via Building Commissioning, etc.)
- Evaluate solutions
- Think of the building as a whole
- Develop tailored solutions that yield multiple benefits while meeting requirements & goals
- Focus on life cycle design
- Work together as a team from the beginning
- Conduct assessments (e.g., Threat/Vulnerability Assessments & Risk Analysis) to help identify requirements & set goals

(Source: www.wbdg.org)
Integrated Design Process

(Source: International Initiative for a Sustainable Built Environment (iiSBE), www.iisbe.org)
LCA: a methodology for assessing the life cycle environmental performance of products and processes

(Source: Athena Institute, www.athenasmi.org)
Conclusions

• Green building movement is critical to every society including Hong Kong and Macau
• There are good opportunities for building and construction professionals to contribute
• More efforts are needed to develop policies, technologies, research studies and design collaboration to overcome the market barriers
• It is also important to educate GREEN people!
THANK YOU 謝謝

(More information: www.hku.hk/bse/sbs/)