Seminar jointly organised by Department of Civil Engineering and CICID, HKU 12 Aug 2013 (Mon)

Modelling of Building Energy Use and Carbon Emissions

Dr. Sam C. M. Hui

Department of Mechanical Engineering
The University of Hong Kong
(cmhui@hku.hk)

Contents

- Introduction
- Building Energy Simulation
- Simulation Tools
- Modelling Process
- Assess Carbon Emissions

Introduction

- Energy is important to every society
 - Economic, environmental & social impacts
 - It is also a key issue for *sustainable development*
- Use energy ...
 - Consume finite fossil fuels (oil, coal, natural gas)
 - Cause air pollution & environmental damage
 - Contribute to global warming
 - Cost money

World total final consumption from 1971 to 2009 by fuel (Mtoe)

(* Source: IEA, 2011. *Key World Energy Statistics 2011*, International Energy Agency, Paris. Available at www.iea.org)

World* CO_2 emissions** from 1971 to 2009 by fuel (Mt of CO_2)

***Other includes industrial waste and non-renewable municipal waste

(* Source: IEA, 2011. *Key World Energy Statistics 2011*, International Energy Agency, Paris. Available at www.iea.org)

Energy efficiency potential used by sector: a huge opportunity going unrealised

The building sector has the largest potential

(Source: Fatih Birol, Chief Economist, International Energy Agency, www.iea.org)

Energy end-use by sector (2009)

Energy end-use in Hong Kong

(Data source: EMSD)

Greenhouse gas (GHG) emission trends of Hong Kong 1990-2008

(Source: www.epd.gov.hk)

Greenhouse gas (GHG) emission of Hong Kong 2008

(Source: www.epd.gov.hk)

Timeline of building energy efficiency regulations in Hong Kong

1991-1995

- 1991 Feasibility study on introduction of OTTV control in Hong Kong
- 1995 Building (Energy Efficiency) Regulations (Cap. 123 sub. Leg. M); HK OTTV Code of Practice

1996-2000

- 1998 Lighting Code and AC Code; launch of the Energy Efficiency Registration Scheme for Buildings (voluntary)
- 1999 Electrical Code
- 2000 Lift and Escalator Code; Revised OTTV limits

2001-2005

- 2004 Performance-based Code; Guidelines on Energy Audit
- 2005 Updated edition of the five codes

2006-2010

- 2007 Updated edition of the five codes; Updated Guidelines on Energy Audit
- 2010 Buildings Energy Efficiency Ordinance (Cap. 610) (mandatory)

2011-Now

- 2011 Revised OTTV limits
- 2012 Full operation of the Buildings Energy Efficiency Ordinance (including Building Energy Code and Energy Audit Code)

(Source: EMSD) (See http://www.beeo.emsd.gov.hk for details)

Code of Practice for Building Energy Audit

2012

EMSD 🔯

2012

EMSD 🔯

Building Energy Simulation

- Energy performance of buildings is usually complicated and requires detailed analysis to determine the characteristics
- Building energy simulation and modelling techniques are often used to study it so as to support decisions for building design, operation and management

Building Energy Simulation

- Simulation: (模擬)
 - From latin "simulare" to pretend
 - Using a mathematical model of a system to predict its output for a given input
 - Asking "what if?" within an imaginary framework
 - To simulate => to imitate the operations of realworld facilities or process
 - Examples:
 - Computer simulation games like "SimCity"
 - A child who role plays with toys

SimCity of Hong Kong's buildings

Simulation

 The process of developing a representative model of a system and using it to analyze and predict system behaviour and performance

Modelling

- Deals primarily with the relationship between actual dynamic processes and models
- Usually involves iterations

* Simulation enables the performance of the building to be established before critical design decisions are taken, enabling optimum building performance to be obtained

Key factors influencing energy consumption

(Source: Energy Efficiency in Buildings: CIBSE Guide F)

Energy flow and concept in buildings

Building energy simulation process

- Building energy simulation can be used to:
 - Assess building design (design evaluation tool)
 - Calculate energy saving or performance (<u>building</u> energy analysis tool)
 - Evaluate energy cost (economic analysis tool)
 - Design & optimise building systems (<u>system</u> design/optimization tool)
 - Satisfy energy code (code compliance tool)
 - Support green building assessment (green design tool)

Building Energy Simulation

- Model existing buildings
 - Useful for "energy performance contracts"
 - Help improve the bldg's operation/control
- Evaluate energy conservation measures (ECM)
 - Estimate energy savings
 - Study the costs and benefits
 - Provide info to design, retrofit & operation
- Comply with building energy code
 - Such as performance-based building energy code

- For green building assessment (e.g. LEED)
 - Using ASHRAE 90.1 Building Energy Standard to check compliance and determine credits
 - Energy cost budget (ECB) method
 - To determine minimum compliance
 - Design Energy Cost <= Energy Cost Budget
 - Appendix G: building performance rating method
 - To rate the energy efficiency of building designs that exceed the requirements of the standard 90.1
 - % improvement = (Baseline Proposed) / Baseline x 100%

Building Energy Simulation

- What can building simulation do?
 - Compare different design options
 - Based on energy performance, peak demand, and costbenefit implications
 - Predict the dynamic response and performance of buildings
 - Evaluate complex, innovative and 'green' technologies
 - Such as natural ventilation, advanced controls operation and passive design

- Further reading:
 - Understanding the Energy Modeling Process:
 Simulation Literacy 101,
 www.buildinggreen.com/features/mr/sim_lit_101.cfm
 - Energy Conservation Building Code Tip Sheet: Energy Simulation, <u>www.emt-india.net/ECBC/EnergyEfficiencyinHospitals_4Mar2009/Tips/EnergySimulation.pdf</u>
 - Thomas, P. C., 2002. Building energy performance simulation a brief introduction, DES 17, In *BDP Environment Design Guide*

- Types of building simulation tools
 - <u>Simplified software</u> for overall energy consumption assessment, peak temperature prediction, cooling/heating load calculations
 - Sophisticated software for hourly simulation of heat, light & air movement
 - <u>Complex specialist software</u>, for lighting, computational fluid dynamics (CFD), 2- and 3-dimensional conduction calculations
 - Integrated design and analysis systems which combine a number of the above categories

DOE-2

Solar-5

IES-VE

ESP-r

Building Energy Simulation Software

E-20-II & HAP

- Many software tools in the market
 - From simplified to complicated one
 - Select according to the task
- For beginners, we recommend
 - Energy-10, HAP, TRACE 700, eQUEST
- For sophisticated study, may consider
 - DOE-2, EnergyPlus, ESP-r, TRNSYS, IES-VE
- Further information:
 - Building Energy Software Tools Directory (by US-DOE)
 - http://www.eere.energy.gov/buildings/tools_directory/

- Examples of building energy simulation tools
 - Energy-10
 - http://www.sbicouncil.org/energy-10-software
 - VisualDOE (based on DOE-2.1e)
 - http://www.archenergy.com/products/visualdoe/
 - http://gundog.lbl.gov/dirsoft/d2whatis.html
 - MIT Design Advisor (do online simulation)
 - http://designadvisor.mit.edu/design/

- Creates two building descriptions based on five inputs and user-defined defaults.
- Location
- Building Use
- •Floor area
- Number of stories
- •HVAC system

Gets you started quickly.

For example:

Reference Case

Low Energy Case

R-8.9 walls (4" steel stud)

R-19 roof

No perimeter insulation

Conventional double windows

Conventional lighting

Conventional HVAC

Conventional air-tightness

Uniform window orientation

Conventional HVAC controls Conventional duct placement Leakage reduced 75%

Improved HVAC controls

Ducts located inside, tightened

R-19.6 Walls (6" steel stud with 2" foam)

R-38 roof

R-10 perimeter insulation

Best low-e double windows

Efficient lights with daylight dimming

High efficiency HVAC

Passive solar orientation

2,000 m² office building

ANNUAL ENERGY USE

RANKING OF ENERGY-EFFICIENT STRATEGIES

Example: Energy-10

Sample - Lower-Energy Case

Heating

Cooling

Inside T

Outside T

Example: Energy-10

MIT Design Advisor, http://designadvisor.mit.edu/design/

Modelling Process

- How to perform building simulation?
 - Select and master how to use a program
 - Represent the building and HVAC systems
 - Construct the simulation model
 - Prepare the input data
 - Run and control the program
 - Interpret the results, analysis and reporting
 - e.g. determine energy and cost savings

Building description

Simulation tool (computer program)

Simulation outputs

- physical data
- design parameters

- energy consumption (MWh)
- energy demands (kW)
- environmental conditions

Building energy simulation: Inputs and Outputs

INPUTS:

- Weather data
- Building geometry
- Construction type
- HVAC type / usage
- Occupancy info
 - Quantity of users
 - Lights
 - Equipment
 - Usage

OUTPUTS:

- Space temperatures
- Surface temperatures
- Humidity levels
- HVAC parameters
- Energy consumption
 - Component
 - System
 - Whole-building

Garbage In, Garbage Out (GIGO)

Modelling Process

- Building energy simulation is based upon
 - Load calculation thermal or HVAC
 - Determine peak HVAC design loads
 - *Energy calculation* energy to meet the loads
 - Estimate annual energy requirements
- Time intervals
 - Full hour-by-hour (**8,760 hours** = 365 x 24)
 - Simplified hourly: e.g. one day per month
 - Bin method or degree days

Major elements of building energy simulation

Information flow in building simulation

Make things as simple as possible, and no simpler. (Albert Einstein)

Combine several rooms into one zone

Assess Carbon Emissions

- Carbon is frequently used as shorthand for either carbon dioxide (CO₂) or carbon dioxide equivalents (CO₂-e) of greenhouse gases
 - Used as an indicator for environmental impact or sustainability level

Carbon footprint

• Measur the exclusive direct (on-site, internal), and indirect (off-site, external, embodied, upstream, and downstream) CO₂ emissions of an activity, or over the life cycle of a product, measured in kg

Urban cities and their ecological footprints

Carbon footprint of a building and its components

Materials manufacturing

Materials transport

Demolition wastes transport

Demolition wastes treatment

Building construction

Building operation

Building renovation

De-construction

Electricity consumption

On-site fuel consumption

On-site waste water treatment

On-site solid wastes treatment

Industrial processes housed in the building

Assess Carbon Emissions

- International standards for carbon footprint calculation and analysis
 - ISO 14040: Life Cycle Assessment Principles and Framework
 - BSI: PAS 2050 Specification for the Assessment of Life-Cycle GHG Emissions of Goods/Services
 - WRI/WBCSD: Greenhouse Gas Protocol
 - IPCC: 2006 Guidelines for National Greenhouse Gas Inventories

Cradle-to-Grave

Cradle-to-grave is the full Life Cycle Assessment from resource extraction ('cradle') to use phase and disposal phase ('grave').

LCA: a methodology for assessing the life cycle environmental performance of products and processes

(Source: Athena Institute, www.athenasmi.org)

Life cycle assessment framework

(Source: US-EPA)

- HK's carbon audit guidelines for buildings to report on greenhouse gas emissions focus on:
 - Physical boundaries (site boundaries of building)
 - Operational boundaries (to identify and classify the activities to determine the scope)
 - Scope 1 direct emissions and removals
 - Scope 2 energy indirect emissions
 - Scope 3 other indirect emissions
 - Reporting period (usually one year)
 - Collecting data and information to quantify the greenhouse gas performance

Scope of greenhouse gas (GHG) emissions

(Source: UNEP Sustainable Buildings and Climate Initiative, www.unepsbci.org)

The 5 sectors of ecological footprint (for Hong Kong) Food Consumption Urban Use Energy Use Water Use Material Use **Built Land** Material Land Energy Land Water Land Food Land (Source: Friends of the Earth (Hong Kong), www.foe.org.hk)

Energy
efficiency
standards
focus on just
24% of the
total CO₂

Entertainment

2%

Other Operational Energy 19% Reconstruction

Embodied Carbon: 35%

eTool

Materials
Manufacturing: 23%

Heating & Carbon Emissions of Materials
Aircon: 23%

Transport: 3%

a Typical Building

Operational

Carbon: 65 %

Refrigeration & cooking 14%

Hot Water

Assembly & Maintenance:

(Source: http://etool.net.au)

Balancing carbon emissions for zero carbon buildings (ZCB)

Balancing Carbon

Operating energy of building

Embodied carbon in building materials

People, "use" and transportation

On-site renewable and generation

Off-site renewable, generation and supply

Other purchased carbon offsets

Zero
"0"

Allowable emission reduction options for zero carbon buildings

Assess Carbon Emissions

- Current limitations
 - Unclear definition of 'zero carbon'
 - Lack of scientific assessment methods for carbon footprint of building projects
 - Limited data availability and uncertainty of data
 - Complicated process for whole life cycle analysis
 - Still weak market demand and awareness
- Future research
 - Zero carbon building: definition
 - Assessment tool for footprint analyses

