ASHRAE Hong Kong Chapter Annual General Meeting: Technical Talk 29 Mar 2019 (Fri), Room TU107, PolyU

BIM Development and Trends in Hong Kong

Ir Dr. Sam C. M. Hui
Faculty of Science and Technology
E-mail: cmhui@vtc.edu.hk

Contents

- Introduction
- Key concepts of BIM
- Challenges for BIM
- BIM technology trends
- Conclusion

- Building Information Modelling (BIM)
 - A collaborative working process
 - 3D design + Information
- BIM definitions:
 - Process of creating & using digital models for design, construction, and/or operations of projects
 - Simulate the construction project in a virtual environment, to identify any potential design, construction, or operational issues

BIM is an intelligent 3D model-based process

Video:

- What is BIM (Building Information Modeling)? (3:00) https://youtu.be/suNadRnHy-U

BIM history and timeline

1970s
BUILDING
DESCRIPTION
SYSTEM

1980s

1990s

BUILDING PRODUCT MODEL

GENERIC BUILDING Model

BUILDING INFORMATION MODEL

2000s

BIM concepts have been around since the 1950s!!

1957: Pronto, first commercial computer-aided machining (CAM) software

1963: Sketchpad, CAD with graphical user interface

Introduction

- BIM history in the world
 - Early dates of computer-aided design (CAD) and computer-aided manufacturing (CAM)
 - Dream building the (virtual) model
 - Development of computer graphics
 - High quality computable 3D representations
 - BIM software (ArchiCAD, Vectorworks, Revit)
 - Towards virtual design and construction (VDC)

- Virtual Design & Construction (VDC)
 - It is the management of integrated multidisciplinary performance models of designconstruction projects
 - Five elements that enable VDC:
 - 1. BIM model
 - 2. Level of development (LOD)
 - 3. Advanced digital tools
 - 4. Collaboration space
 - 5. Collaborative mindset

Virtual design and construction (VDC) process

Process

(Creating & using the BIM model)

Organization

(Designers & builders collaborate in a team)

BIM

(3D model + Information)

BIM development in Hong Kong

- Promoting BIM in government departments
 - e.g. Housing Authority, ArchSD, DSD, EMSD
- Mandatory BIM adoption for capital works projects (Jan 2018); Construction 2.0 report
- BIM initiatives by Construction Industry Council
 - e.g. roadmap for BIM, promotion & training, Certification of BIM Manager/Professionals, BIM competitions
- Development of BIM standards & guidelines

- BIM:
 - Building Information Modelling
 - 建築資訊模擬 / 建築資訊模型
 - Building Information Management
- Information and Model
 - 1D: Data/Text information (non-graphical)
 - 2D: Drawings/Diagrams (graphical)
 - 3D: Modelling (geometric information, objects)
 - Object based (with attributes, parametric)

BIM dimensions LIFE CYCLE READY GREAT MODEL DETAIL COMPLETE PARAMETERS HIGHEST LEVEL OF M

3D MODEL

ANALYTICAL PARAMETERS

The nature of BIM

- It is a database not just 3D drawings/images
- It is all about sharing info through a model with all disciplines (requires all parties to collaborate)
- Refers to a "model" but it is a "process" not a product (it is a way of working)
- Working in a BIM environment (a common data environment)
- Connects formerly disconnected silos of info

Basic concepts of BIM (for building asset lifecycle management) Building Infomration Modeling Process

BIM Process + Analysis Tools = Power of BIM

Energy, green building and structural analyses

3D Scanning

(UAS) / Drone

BIM for building, construction and infrastructure

Design meeting

Construction meeting

- Benefits of BIM
 - Promises better decision making
 - Accurate geometrical representation
 - Enhanced efficiency & lowered overall risk
 - Improved project sustainability
 - Decreased project cost
 - Increased productivity & quality
 - Reduced project delivery time
 - Enhanced communication & collaboration

BIM maturity levels

DRAWINGS, LINES, ARCS, TEXT ETC.) MODELS, OBJECTS, COLLABORATION) INTEGRATED, INTEROPERABLE DATA

(Image source: http://mitchj.info/suggest/explaining-the-levels-of-bim-bim.html)

LEVEL of DEVELOPMENT LOD 100 LOD 200 LOD 300 LOD 400 LOD 500

Concept (Presentation) Design Development

Documentation

Construction

Facilities Management

DESCRIPTION:

Office Chair Arms, Wheels WIDTH:

DEPTH:

HEIGHT:

MANUFACTURER: Herman Miller, Inc. MODEL: Mirra.

LOD: 100

DESCRIPTION:

Office Chair Arms, Wheels WIDTH:

700

DEPTH:

450

HEIGHT:

1100

MANUFACTURER:

Herman Miller, Inc. MODEL:

Mirra

LOD:

200

DESCRIPTION:

Office Chair Arms, Wheels WIDTH:

700

DEPTH:

450

HEIGHT:

1100

MANUFACTURER:

Herman Miller, Inc.

MODEL:

Mirra LOD:

300

DESCRIPTION:

Office Chair Arms, Wheels WIDTH:

685

DEPTH:

430

HEIGHT:

1085

MANUFACTURER:

Herman Miller, Inc. MODEL:

Mirra

LOD:

400

DESCRIPTION:

Office Chair Arms, Wheels WIDTH:

685

DEPTH:

430

HEIGHT:

1085

MANUFACTURER:

Herman Miller, Inc. MODEL:

Mirra

PURCHASE DATE:

01/02/2013

(Only data in red is useable)

practicalBIM.net @ 2013

Four generations of BIM

BM Building Modeling

Modeling w/ Data Attached

Modeling within a Database

1st Gen: BM

3D model (w/o data); purely physical, geometric components

2nd Gen: BM+I

Data tags added to 3D objects; but not related to each other

3rd Gen: BIM

3D modelling embedded in a construction context; a database as its core

4th Gen: BI(m)

Information about 3D objects without the 3D object itself; e.g. using models for building O&M

Challenges for BIM

- Top 10 "Evil BIM" List
 - 1. Owners Just Requesting "BIM"
 - 2. Not Enough BIM
 - 3. Too Much BIM
 - 4. Unclear Model Element Authors
 - 5. Unnecessary Clashes
 - 6. Evil Scope Agreements
 - 7. Poor Quality Modeling
 - 8. BIM Spreadsheet Contracts
 - 9. "LOD 500 + COBie" Requests
 - 10. Contracting To 2D

- Complexity of BIM software (so many of them!)
 - BIM modeling software
 - BIM execution planning software
 - BIM content management software
 - Generative design software / algorithmic BIM software
 - BIM performance / BIM analysis software
 - BIM collaboration software
 - BIM validation / BIM checking software
 - Preconstruction BIM 4D/5D software
 - Construction BIM software
 - Facilities management BIM software

BIM software

Challenges for BIM

- Major barriers include both technical and nontechnical problems
 - Social-organizational (e.g. resistance to change, lack of understanding & motivation)
 - Technical (e.g. interoperability issues)
 - Financial (e.g. adoption/start-up costs)
 - Contractual (e.g. BIM contract issues)
 - Legal (e.g. BIM model ownership & liability)

- Challenges with BIM implementation
 - Training of employees
 - Lack of standards for BIM
 - Management of data
 - Interoperability of software
- Critical success factors
 - Team collaboration of stakeholders
 - Organization during construction projects

Current team working in the building industry

Common Pre-BIM Process

enter data again

errors

Pre-Design Schematic Design Phase Developr	Construction Bid Construct Documents Phase Phase	tion
--	--	------

BIM can streamline fragmented work processes in construction – "silos"

BIM simulates new project management style & culture for all disciplines to collaborate on building projects.

Three key aspects for successful BIM implementation

Challenges for BIM

- What constitutes BIM capability
 - People that understand design and construction
 - BIM as a collaborative method (a socio-technical system), to deliver a truly collaborative project
 - Focus on time, cost and quality
 - Overcome the fragmented nature of construction sector
 - Design in BIM
 - A high degree of design-driven modeling and documentation automation
 - BIM coordination: models, trades & information

BIM role classification

4 key areas of BIM management:

- Model & drawing management
- Information management
- Design & construction management
- Stakeholder management

(Source: BIM Role Classification http://www.esparlous-design.com/Pages.aspx?Id=26)

If BIM does not deeply alter your core DNA and profoundly change your psyche then you will not understand BIM at all.

- BIM: a paradigm shift (典範轉移/思角轉向)
 - Workflow changes
 - Reengineering of the industry
 - Intelligent objects in a virtual building
 - BIM as a game changer
 - A driver for digital transformation/construction
 - BIM represents a disruption
 - Introduce new capabilities
 - New job skills

- BIM is an enabling technology
 - Common data environment (CDE): enhance collaboration & integration
 - Everything is connected: improve project/issue management, design/construction coordination
 - <u>Virtual design & construction (VDC)</u>: increase efficiency, productivity & quality
 - <u>Life-cycle information</u>: facilitate off-site construction, using manufacturing approach, modular construction & automation

The future of BIM collaboration and construction site

The six waves of BIM

Building Informatics Group, Yonsei University @ 2017

(Source: Rail BIM 2030 roadmap http://big.yonsei.ac.kr/railbim/)

BIM 2.0 Two-track BIM

BIM Level 3: BIM 3.0 Fully Integrated BIM

Collocation, Collaboration, and Coordination

BIM technology trends

- The future of BIM:
 - <u>BIM 4.0 -- Lean BIM</u>: Construction projects are carried out using the manufacturing approach, e.g. modular construction, lean construction, off-site construction, and construction automation
 - BIM 5.0 -- Intelligent BIM: Projects are carried out based on informed decision-making using big data and artificial intelligence (a.k.a. connected BIM or linked BIM)

BIM 4.0 Lean BIM

BIM 5.0 Intelligent BIM

- BIM related construction technologies:
 - Design for Manufacturing and Assembly (DfMA)
 - Modular Integrated Construction (MiC)
 - Prefabricated Prefinished Volumetric Construction (PPVC)
 - Construction Robotics (CR)
 - Construction 3D Printing (c3Dp)
 - Lean Construction (LC)

BIM technology trends

Other technologies with significant impacts:

- Cloud computing & analysis
- Mobile technology & wearable devices
- Global Positioning System (GPS)
- 3D laser scanning & drones
- Internet of Things (IoT) & intelligent sensors
- Big data & data science
- Artificial intelligence (AI)

- BIM => More data/information => Big Data
 - Big data of building/construction/lifecycle
- BIM and Artificial Intelligence (AI)
 - Machine Learning (ML)
 - Deep Learning (DL)
 - Image/visual/speech recognition
 - Problem/safety detection
 - Predictive modelling/analytics
 - Task automation & robotics

Big data-supported BIM platform

Big data provides unprecedented insight and improved decision-making. This technology can be tapped to enhance the design, construction, operation and maintenance of our built environment.

A BIM platform can be linked to a large volume of data that can enhance the decision-making power of the stakeholders in a team. A project can benefit from real-time information sources such as supply chain data, commodity pricing data, marketing data, sensor data, point-cloud data, crime statistics, employment data and so on.

(Source: RICS, 2014. International BIM Implementation Guide)

- Real business value of BIM:
 - Design improvements & optimization
 - Savings on time & costs
 - Faster response time to market & changes
 - Increased productivity & quality
- How to achieve the benefits:
 - Good understanding of BIM concepts
 - Effective integration of related technologies
 - Development of BIM capabilities

Conclusion

- BIM brings significant changes to design, construction and operation of building and construction projects
- It enables a paradigm shift & acts as a driver for digital construction/transformation
- It requires integrated & collaborative working process for all the stakeholders
- It offers good opportunities for innovation & digital team collaboration

THANK YOU 謝謝!!

