

Assessment of ozone micro-nano bubble technology for fresh water cooling towers in HVAC systems

Ir Dr. Sam C. M. Hui
Department of Mechanical Engineering
The University of Hong Kong

Contents

- 1. Introduction
- 2. Principles of Micro-nano Bubble Technology
- 3. Ozone Integrated with Micro-nano Bubbles
- 4. Benefits and Key Considerations
- 5. Application to Fresh Water Cooling Towers in HVAC Systems
- 6. Discussions
- 7. Conclusions

Acknowledgments

Sincere thanks are expressed to Joneson Environmental Technologies Limited of FSE Environmental Technologies Group for providing research funding & technical support for this research.

1. Introduction

- Micro-nano bubbles (MNBs):
 - Very fine gas bubbles with diameters in micrometers & nanometers
 - Typical diameter:
 - Microbubbles (MBs) 10-50 micrometer
 - Nanobubbles (NBs) < 200 nanometer
- Wide applications in many fields of science & technology, such as water treatment, biomedical engineering, and nanomaterials
- Combination of the MNB technique with ozone could provide an efficient approach for improving water treatment in HVAC

Overview of gas bubble size

Basic concepts of macro, micro & nanobubbles

[Refs: (Takahashi, 2017); (Arumugam, 2015)]

Basic components of a microbubble

2. Principles of Micro-nano Bubble Technology

- Bubble formation, coalescence (merging) & break up
- Microbubbles (MBs)
 - Generate free radicals when they break into nano sized bubbles called ultrafine bubble or NB
 - The external electrostatic pressure created by the charged NB interface, balances the internal Laplace pressure; therefore, no net diffusion of gas occurs at equilibrium & the NBs are stable
- Water-related applications of MNBs
 - Water treatment, water purification, environmental pollution control, groundwater bioremediation, wastewater treatment & minerals engineering
 - Commonly known processes in water treatment utilizing bubble technology are floatation, aeration, disinfection & advanced oxidation processes

Recent trends in practical applications of micro-nano bubble technology

Area For Camera

(Source: Prof. Akimi Serizawa, Kyoto University, Japan)

3. Ozone Integrated with Micro-nano Bubbles

- Ozone is a powerful disinfectant for water purification
 - Oxidation of compounds via ozone molecule (direct reaction)
 - Oxidation through the reaction of the compound with the hydroxyl radicals formed from ozone (indirect reaction)
- Limitations of ozone: low mass transfer efficiency, low saturation solubility & short half-life
- Ozonation process in water treatment can be enhanced economically by using the MNB technology
 - Creates positive synergetic effects on solubility, stability & mass transfer efficiency (prolong reactivity of ozone & improve the decomposition rate)

Typical water ozonation process & oxidation methods

[Refs: (Takahashi et al., 2012); (Takahashi et al., 2016)]

Intensify ozonation using MNB technology

Camera

[Ref: (Gao et al., 2019)]

Distribution of ions at & near the gas-water interface

[Ref: (Takahashi, 2005)]

Characteristics of micro-nano bubbles (MNBs)

- 1. Small bubble size
- 2. Slow rising velocity
- 3. Decreasing friction drag
- 4. High pressure inside the bubble (self-compression effect)
- 5. Large interfacial area
- 6. Large gas dissolution
- 7. Dissolution & contraction of MNBs
- 8. Negatively charged surface

[Ref: (Tsuge, 2015)]

4. Benefits and Key Considerations

- MNBs are able to catalyze chemical reactions, inactivate pathogens, mitigat biofouling & enhance the detoxification efficiency, thereby improving the efficiency of chemical & biological treatment of water
- Can help reduce biological, chemical & physical loads in order to reduce the running costs & increase the treated water quality
- Can generate free radicals during the collapsing process under water & this is a very effective property for surface cleaning
- Can increase the concentration of ozone & hydroxyl radical (·OH) which will help achieve efficient reduction of oxidative chemical oxygen demand (COD) of the treatment process

 Area Fo

Unique physicochemical characteristics of nanobubbles (NBs)

[Ref: (Atkinson et al., 2019)]

4. Benefits and Key Considerations

- Potential benefits for HVAC applications
 - <u>Economic benefits</u>: downsize the facilities, reduce operation & maintenance cost of water treatment, enhance chiller energy performance
 - <u>Environmental benefits</u>: effluent disposal reduction, water & energy conservation, reduction of greenhouse gas emissions
 - <u>Social benefits</u>: safety & health impacts; reduce or replace the use of chemical detergents or disinfectants & minimize the risk of chemical allergy
- Can form gas bridges that enhance particle-particle aggregation to aid in particulate or surfactant removal (surface cleaning & defouling)

Key considerations of MNB technology

Bubble size & internal pressure

Bubble rise velocity

Mass transfer rate from gas to liquid (mol/s):
$$N = \frac{k_L A 1(p - p^*)}{H}$$

5. Application to Fresh Water Cooling Towers in HVAC Systems

- Cooling tower evaporation
 - A high percentage of the materials dissolved in the water
 - Appreciable quantities of airborne impurities may enter during operation
- During the condensation process soluble minerals are deposited as scale in the condenser tubes & microscopic plant matters tend to deposit as biofilm in the condenser tubes
- Without proper water treatment, corrosion & scaling occurs in the pipes & basin which results in poor heat transfer & renders the cooling tower inefficient
- Ozone water treatment can be enhanced by using MNBs

Schematic diagram of a cooling tower system

Condenser tubing & fouling effects

(Image source: https://ahrinet.org/contractors?S=134)

5. Application to Fresh Water Cooling Towers in HVAC Systems

- By injecting ozone gas into the cooling water in the form of ultrafine bubbles, it is possible to achieve higher levels of dissolved ozone in the water & allow the dissolved ozone to remain present in water for a much longer time
- The use of NBs to mitigate fouling
 - NBs control biofilm formation through directly acting on microbes & indirectly acting on water quality
 - NBs could interact & inactivate bacteria that often foul membrane or other surfaces through disruption of cell structure
 - The vibrational motion of NBs may induce shear forces that disrupt biofilms, leading to reduced chemical usage & energy-intensive washing

6. Discussions

- Fouling in cooling towers
 - Affects the heat transfer surfaces of water-cooled condensers
 - Fouling factor is defined as the thermal resistance due to the accumulation of contaminants on the water-side of the heat transfer surface
- In many buildings & facilities, chillers are the largest energy-using component
 - As the fouling factor increases, both the condensing temperature & power input will rise due to poor heat dissipation, resulting in lower chiller coefficient of performance (COP)
 - For a condenser with a design fouling factor of 44 mm².K/W, an increment of scale fouling by 50% in the condenser will cause the chiller COP to decline more than 2%

Impact of condenser fouling factor on chiller performance

[Ref: (Stoecker & Jones, 1982)]

6. Discussions

- Energy impact & operation costs
 - Proper water treatment improves the performance & energy efficiency of the HVAC systems, extends the life of equipment (by controlling scaling, corrosion & fouling which result in equipment damage) while helping to protect human health & safety
 - Optimal energy efficiency & equipment efficiency can be evaluated through operational relations & performance between system equipment
 - Chiller energy consumption & operation costs can be assessed through further research of the ozone MNB system
- In order to develop an effective ozone MNB system, it is essential to examine the bubble characteristics at functional levels & investigate the corresponding system operating parameters to achieve optimization

7. Conclusions

- MNBs have been increasingly used as a highly efficient & environmentally friendly non-chemical gas-liquid phase process in water treatment
- The ability of the bubbles:
 - Long residence time, high mass transfer efficiency, relatively lower rising velocity, high zeta potential at the interface, easily tailored surface charge, free radical generation ability & improved collusion efficiency
 - Combination of ozone & MNBs has positive synergetic effects on solubility, stability, & gas transfer efficiency
- For fresh water cooling towers in HVAC systems, the ozone MNB technology can provide economic, social & environmental benefits
 - Help to achieve energy saving in buildings & reduce operating costs