ASHRAE Hong Kong Chapter Annual General Meeting Technical Seminar on 23 May 2008 (Fri)

Zero Energy Building: What Does It Mean?

Dr. Sam C M Hui

Department of Mechanical Engineering
The University of Hong Kong
E-mail: cmhui@hku.hk

Contents

Define Zero Energy Building (ZEB)

Examples of ZEB

Critical Issues

ASHRAE Design Tools

- Zero energy building (ZEB)
 - A building that produces as much energy on-site as it consumes on an <u>annual</u> basis
 - "Net" zero energy building
- Benefits of ZEB:
 - Reduce energy consumption and costs
 - Reduce carbon emissions
 - Reduce dependence on fossil fuels

- A building approaching zero energy is called
 - Near-zero energy building
 - Ultra low energy building
- Low energy building (LEB)
 - Building developments that facilitate or use low levels of energy (than regular buildings)
- Energy-plus/-positive building (E+B)
 - That produces a surplus of energy during a year

- Net zero site energy (site ZEB)
 - Amount of energy provided by on-site renewable energy sources is equal to the amount of energy used by the building
- Net off-site zero energy (off-site ZEB)
 - Similar to previous one, but consider purchasing of energy off-site from 100% renewable energy sources

- Net zero source/primary energy (source ZEB)
 - It produces as much energy as it uses in a year, when accounted for the source
 - For electricity, only around 35% of the energy used in a fossil fuel power plant is converted to useful electricity and delivered
 - Site-to-source conversion multipliers are used to calculate a building's total source energy

- Net zero energy costs (cost ZEB)
 - The cost of purchasing energy is balanced by income from sales of electricity to the grid of electricity generated on-site
- Net zero energy emissions
 - Zero carbon building or zero emission building
 - The carbon emissions generated from the on-site or off-site fossil fuel use are balanced by the amount of on-site renewable energy production

- Other related terms
 - Off-the grid building: completely self-sufficient stand-alone ZEB that is not connected to an off-site energy utility facility
 - It requires distributed renewable energy sources AND energy storage capability
 - Autonomous or self-sufficient building: a building designed to be operated independently from infrastructural support services e.g. electricity grid, municipal water systems, sewage treatment systems, storm drains, communication services

- Other related terms (cont'd)
 - Passive (energy) building:
 - Passive house (passivhaus in German); passive solar building; ultra low energy, through passive design; does not include active systems e.g. mechanical ventilation or photovoltaics
 - Green building:
 - Reduce the environmental impact while improving environmental sustainability
 - Most ZEBs are very "green"; very few green buildings use zero energy

Examples of ZEB

- Selected examples of ZEB:
 - Germany
 - U.K.
 - Singapore
 - Guangdong, China
 - Malaysia

Self-sufficient solar house in Freiburg, Germany

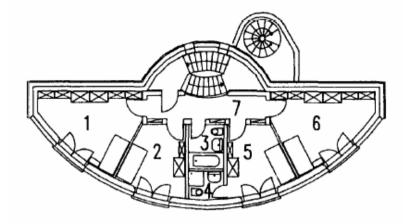


Fig. 3. The first floor of the SSSH

1: room 1, 2: room 2, 3: bath/toilet, 4: shower/toilet, 5: room 3, 6: room 4, 7: dor.

(Source: www.ise.fhg.de)

- Low-energy buildings in Germany
 - Determined by heating needs in kWh/m²/year
 - Existing buildings (depending on insulation): 80 300 kWh/m²/year
 - Low-energy building: $40 79 \text{ kWh/m}^2/\text{year}$
 - Three-litre-building: 16 39 kWh/m²/year
 - Passive energy building: max. 15 kWh/m²/year
 - Zero-energy building: 0 kWh/m²/year
 - Energy-producing building or energy surplus: (-ve) kWh/m²/year

(Source: www. solarserver.de)

Beddington Zero Energy Development (BedZED), UK

Energy design features:

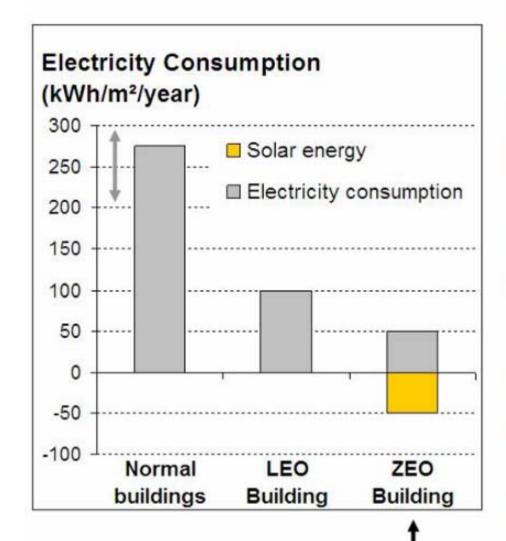
- Triple glazed
- High thermal insulation
- 777 m² of solar panels
- Co-generation
- District heating & electricity

Wind catcher

Singapore zero energy building – Building and Construction Authority (BCA) Academy (completed in 2009)

(Source: www.channelnewsasia.com)

Zero energy office building in Guangdong, China (Pearl River Tower, for Guangdong Tobacco Company)


(completed in 2009)

Main features:

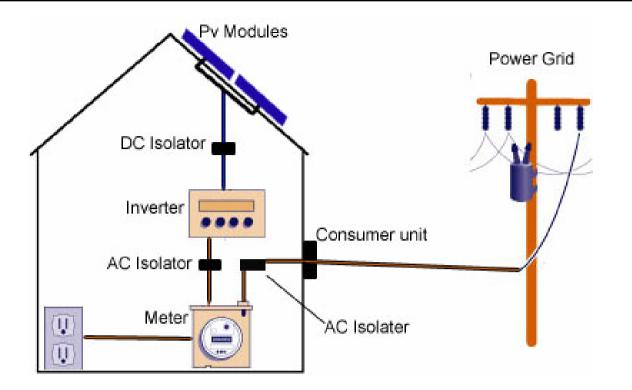
- Orientation of the building
- Low-E-glass
- Double-layer curtain-wall
- Chilled slab concrete ceilings
- Lighting efficiency
- Geothermal heat sink
- Energy storage
- Wind
- Integrated photovoltaics
- Microturbines

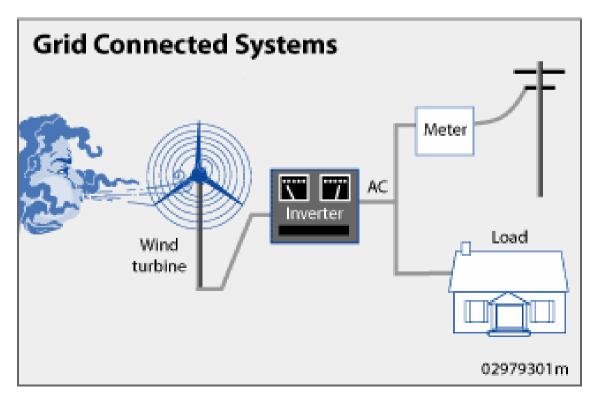
(Source: sustainabledesignupdate.com)

Malaysia low energy building and zero energy building

0-energy (Zero Energy Office)

(Source: www.ptm.org.my/PTM_Building)


Zero Energy Office (ZEO) Building in Malaysia Video Presentation (7 min.)



- For energy balances in ZEB, usually grid connection is allowed and necessary
 - Excess production to offset later energy use
- Achieving a ZEB w/o the grid is very difficult, as current storage technologies is limited
 - Off-grid buildings cannot feed their excess energy production back onto the grid to offset other energy uses

Grid connected PV systems

Grid connected wind energy systems

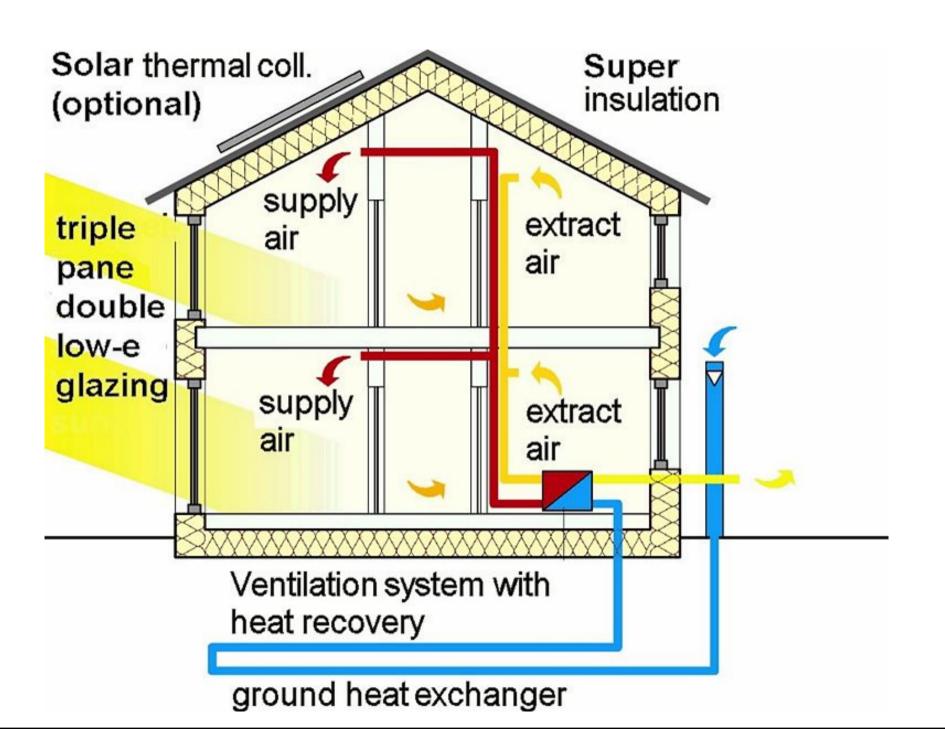
- Usually, the goal of ZEB designers is to:
 - Design a building that uses zero energy, and produces zero emission
 - Also, minimize all energy use and damage to the environment
- Passive solar design is often more cost effective than adding expensive PV to a conventional inefficient building

- Balance between energy conservation and energy generation
 - A good ZEB should first encourage energy efficiency, and then use renewable energy sources available on site
- ZEB supply options strategy:
 - i. Reduce site energy use
 - ii. On-site supply
 - iii. Off-site supply

Table 1. ZEB Renewable Energy Supply Option Hierarchy

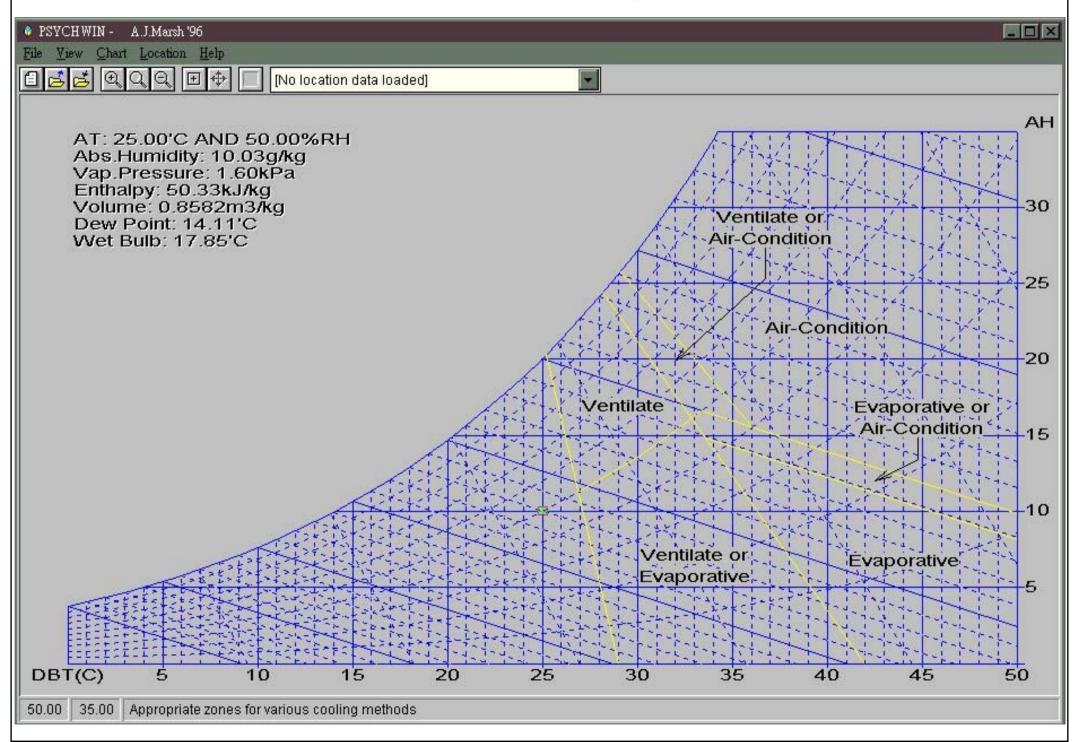
Option Number	ZEB Supply-Side Options	Examples
0	Reduce site energy use through low-energy building technologies	Daylighting, high-efficiency HVAC equipment, natural ventilation, evaporative cooling, etc.
On-Site Supply Options		
1	Use renewable energy sources available within the building's footprint	PV, solar hot water, and wind located on the building.
2	Use renewable energy sources available at the site	PV, solar hot water, low-impact hydro, and wind located on-site, but not on the building.
Off-Site Supply Options		
3	Use renewable energy sources available off site to generate energy on site	Biomass, wood pellets, ethanol, or biodiesel that can be imported from off site, or waste streams from on-site processes that can be used on-site to generate electricity and heat.
4	Purchase off-site renewable energy sources	Utility-based wind, PV, emissions credits, or other "green" purchasing options. Hydroelectric is sometimes considered.

(Source: National Renewable Energy Laboratory)


- ZEB is not a single product or technology; but rather a combination of closely-integrated evolving technologies
 - Whole-building energy-consumption system integration
 - Requires careful planning and computer modelling to make all the subcomponent parts work together cost effectively

- Common energy efficiency (EE) features:
 - Daylighting
 - EE lighting
 - EE office equipment
 - EE ventilation
 - Controls & Sensors
 - Orientation
 - Insulation
 - Energy management

Typical techniques for passive house



- Passive solar buildings
 - Aim to maintain interior thermal comfort whilst reducing the requirement for active cooling and heating systems
- 4 passive solar energy configurations:
 - Direct solar gain
 - Indirect solar gain
 - Isolated solar gain
 - Passive cooling

Analysis of cooling strategies on a psychrometric chart

- Total energy approach (depend on size & site)
 - Combined heat, cooling and power
 - Distributed generation schemes
 - District cooling/heating
 - Shared wind turbines
- Better use of heat energy
 - Heat recovery ventilation
 - Heat pump system (e.g. for heating hot water)
 - Thermal mass of structure (stablize indoor temp.)

- Design of ZEB
 - Need to evaluate future consequences on energy demand using life cycle energy analysis
 - Find out cost-effective ways to reduce energy use
 - Balance initial construction costs with operating costs
 - Model economic and financial implications
 - Such as tariff structures, investment strategies
 - May change with increase of conventional energy (oil price now goes up to US\$135 per barrel!!)

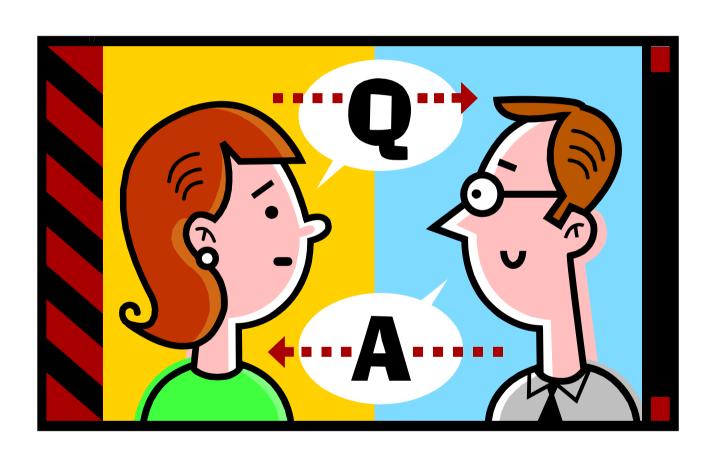
- Design of ZEB (cont'd)
 - Methods to evaluate building energy use
 - No standards available in HK at present
 - May use the performance-based building energy code as a reference (simulation approach)
 - Use simulation to predict how the building will perform before it is built
 - Calculate likely energy use & thermal loads
 - Form the basis for determining "zero" energy use

- ZEB vs Green Building (GB)
 - Many similarities between the goals of ZEB & GB
 - Reduce or eliminate energy bills & greenhouse gas emission
 - Achieve high-performance energy-efficient buildings
- But, ZEB does not consider the followings:
 - Embodied energy of the structure
 - Energy for construction of the building
 - Energy for transport or commuting

- Advanced Energy Design Guides
 - Developed by ASHRAE, USGBC, AIA
 - Free for download at www.ashrae.org/freeaedg
 - Small warehouses and self-storage buildings
 - Small office buildings
 - Small retail buildings
 - K-12 school buildings
 - Energy savings target of 30% (the first step in the process toward achieving a ZEB)

Advanced Energy Design Guides

www.ashrae.org/freeaedg


- Useful ASHRAE Standards
 - Standard 55 thermal comfort
 - Standard 62 indoor air quality
 - Standard 90.1 energy standard for buildings
 - Standard 100 energy conservation in existing buildings
 - Standard 105 measuring & expressing building energy performance
 - Standard 140 test for evaluation of building energy analysis computer programs

- Video presentation (2 min.)
 - Achieving net zero energy buildings
 - Typical 2-story building
 - Building envelope measures
 - HVAC, service water heating and lighting measures
 - Renewable energy measures

THANK YOU

