

Contents

- Sustainable Construction
- What is Green Building?
- Basic Principles
- · Green Building Assessment
- · Practical Examples

Sustainable Development

- The Brundtland Report (Our Common Future)
 - "S.D. is development which meets the needs of the present without compromising the ability of future generation to meet their own needs." World Commission on Environment and Development.
- Two important concepts
 - Needs maintain an acceptable life standard
 - <u>Limits</u> within the carrying capacity of supporting ecosystems and resource base

Sustainable Development

- Sustainability is about: [Mei Ng, FoE(HK)]
- System thinking (harmonize human & living)
 - Value judgment (importance of natural capital)
 - Efficiency (resources & eco-efficiency)
 - Fair share (inter- & intra-generational equity)
 - · Making informed choices
 - Quality people & quality life
 - Self-reliance (self-help & regeneration)

Sustainable Development

- One day in HK (popul. = 6.97 million) [1999]
 - Fresh water consumption = 358 litre/person
 - Electricity consumption = 13.9 kWh/person
 - Food consumption:
 - Vegetables 1,100 tonnes; fruits 1,800 tonnes
 - Live pigs 6,200 heads; live cattle 170 heads
 - Live poultry 190 tonnes; fresh eggs 200 tonnes
 - Freshwater fish 120 tonnes; marine fish 170 tonnes
 - Solid waste production = 18,040 tonnes

Sustainable Construction

- · Current building & construction practices
 - Most materials are not recyclable
 - · Generates waste & pollution
 - Energy supply is based on fossil fuels
 - · Buildings are not always designed for optimal energy & environmental performance
 - · Lack of connection with nature
 - · Health & well-being of occupants are overlooked

Sustainable Construction

- · Goals of sustainable building
 - · Design buildings that are minimal consumers
 - Use materials that have a benign impact on the

- Construct buildings with healthy and inspiring internal environments
- Promote efficient transport and communication

What is green building?

- A <u>loosely</u> defined collection of land-use, building design, and construction strategies that reduces the environmental impacts
- The term "green" is extremely wide ranging, encompassing many viewpoints and open to broad interpretation
 - · Debate around green building/architecture
 - · Complexity of environmental issues

What is green building?

- · Green buildings are
 - Energy and resource efficient
 - Non-wasteful and non-polluting
 - Sustainable design that helps minimise broad environmental impacts (e.g. ozone depletion)
 - Highly flexible and adaptable for long-term functionality
 - Easy to operate and maintain (lower running costs)
 - Supportive of the productivity and well-being of the occupants

What is green building?

- "Green" is different for every building
 - No building is completely green in every aspects
 - It is a continually evolving concept, a goal
- What makes a particular building green?
 - A unique solution that responds to the specific functional requirements and the climatic condition
 - Truly green design is more than a technological add-on – consider the context

Current issues in HK

- · Green and innovative buildings
- Joint Practice Notes by BD, LandsD & PlanD
 - Provide incentives: exemption from gross floor area (G.F.A.) & site coverage calculations
 - Green features included (currently):
 - Balconies
 - Wider common corridors & lift lobbies
 - · Communal sky gardens & communal podium gardens
 - · Acoustic fins
 - · Sunshades & reflectors
 - · Wing walls, wind catchers & funnels

Basic principles

- Aims of green building design
 - Reduce energy in use
 - Minimise external pollution & environmental damage
 - Reduce embodied energy & resource depletion
 - Minimise internal pollution & damage to health
- Green design requires resolving many conflicting issues and requirements

Basic principles

- · Green building design involves
 - Holistic approach (whole systems thinking)
 - · Each aspect is considered in relation to all others
 - Interdisciplinary efforts
 - · Understanding & contribution from all involved
 - Understanding of <u>building performance</u>
 - Assessment & evaluation of performance
 - · Caring for people
 - · Well being of the occupants and users

Major issues

- Sustainable site
- Energy efficiency
- · Renewable energy
- Building materials
- Water conservation
- · Indoor environmental quality

Sustainable site

- Basic principles:
 - Site selection (e.g. prefer brownfield site)
 - Promote efficient movement network & transport
 - Control & reduce noise impacts
 - Optimise natural lighting & ventilation
 - Design for green space & landscape
 - · Minimise disturbance to natural ecosystems
 - Enhance community values

Energy efficiency

- Design strategies:
 - Minimise thermal loads & energy requirements
 e.g. by reducing heat gains from equipment
 - Optimise window design & fabric thermal storage
 - Use of heat recovery & free cooling methods
 - Total energy approach (e.g. district cooling)
 - Energy efficient lighting design & control
 - High-efficiency mechanical & electrical systems

Renewable energy

- Energy that occurs <u>naturally</u> and <u>repeatedly</u> on earth and can be harnessed for human benefit, e.g. solar, wind and biomass
- Common applications
 - · Solar hot water
 - · Solar photovoltaic
 - Wind energy
 - Geothermal
 - Small hydros

Dutch pavilion, EXPO 2000 Hannover

Project Zed - London

Building materials

- Specify green materials & products
 - Made from environmentally attractive materials
 - That reduce environmental impacts during construction, renovation, or demolition
 - That reduce environmental impacts of building operation
 - That contribute to a safe, healthy indoor environment
 - That are green because what isn't there (e.g. CFC)

- Methods:
 - Reduce water consumption
 - Low-flush toilets & showerheads
 - · Leak detection & prevention
 - · Correct use of appliances (e.g. washing machine)
 - Reuse and recycle water onsite
 - · Rainwater collection & recycling
 - Greywater recycling (e.g. for irrigation)
 - No-/Low-water composting toilet

Indoor environment

- Indoor air quality (IAQ)
 - People spend most of their time indoors
 - Pollutants may build up in an enclosed space
 - · Effects on health and productivity
- Control methods
 - Assess materials to avoid health hazards
 - Ensure good ventilation & building management

Indoor environment

- Visual quality
 - Provide daylight & comfortable conditions
- Acoustic quality
 - · Noise control
- Controllability
 - · Allow occupant control over thermal & visual

Basic Principles

- · Building environmental assessment
 - <u>Identify</u> & <u>evaluate</u> the environmental effects of building development or operation
 - <u>Inform</u> decision making and <u>promote</u> sustainable design & management
- An objective assessment is a useful starting point from which to make design and building improvements

Basic Principles

- Why environmental assessment?
 - Provide a common set of criteria & targets
 - Guide design decisions & choices
 - · Raise awareness of environmental issues/standards
 - Recognise & encourage good practices
 - Stimulate the market for sustainable construction
 - Allow a verifiable method & framework
 - Enable policies & regulation (e.g. certificate/label)
 - Improve management & prioritization (incentives)

Basic Principles

- Scope/Scale of the evaluation
 - Building products
 - · Building processes
 - Structural members/elements
 - Building systems
 - · Single buildings
 - · Groups of buildings
 - District, urban, regional & city
- New, existing & refurbished buildings

Assessment Criteria

- A broad range of criteria
 - Qualitative issues
 - · Quantitative issues
- Types of criteria
 - · Ecological vs health-related
 - Direct impacts vs indirect impacts
 - Immediate vs long-term implications
 - Global vs local

Assessment Criteria

- Assessment process
 - · Examine the performance of a building or its subsystem against a declared set of criteria
 - Usually voluntary (aim to stimulate the market)
- Scale of performance
 - Measure & assess relative performance
 - Assign 'points' or 'score' to various aspects
 - · Quantitative criteria: relative to a baseline
 - Qualitative criteria: presence/absence of such features

Assessment Criteria

- · Assessing multiple criteria
 - Indicate the 'best' overall performance
 - Methodology
 - Cost (or monetary value \$)
 - Equivalence method (e.g. air/water pollution index)
 - EcoCost (in common Gaia scale 0-1)
 - · EcoPoint or EcoProfile
 - · Weighting system
 - · To indicate relative importance, scale and urgency

Assessment Methods

- Common approaches
 - · Checklists or forms
 - · Computer-based methods
 - Spreadsheet or computer programs
- Models used
 - · Environment model
 - · Product model
 - Life cycle model
- Data required: from simple to very detailed

Assessment Methods

- Examples
 - Europe:
 - BREEAM-UK
 - ECO-PRO (Germany)
 - EcoProP & PIMWAQ (Finland)
 - EQUER (France)
 - ECO QUANTUM (Netherlands)
 - Canada & USA:
 - BREEAM-Canada & BEPAC-Canada
 - LEED (USA)
 - BEES (USA) (for building products)

Assessment Methods

- Examples (cont'd)
 - · Asian countries:
 - HK-BEAM
 - Japan Green Building Guide
 - · Korea Green Building Rating System
 - Taiwan Green Building Label

- International model (being developed)
 - GBTool (Green Building Challenge)

Korea's Green Building Rating System Criteria (multi-residential building)

Section	Resource Consump- tion	Environ- mental Loadings	Quality of Indoor Environ.	Longevity	Process	Contextual Factors	
Criteria (Number)	- energy (8) - land (3) - water (2) - materials (7)	- airborne emissions (17) - solid waste (4) - liquid waste (4) - other loadings (2)	- air quality (10) - thermal quality (4) - visual quality (7) - noise & acoustics (3) - controll-ability of system (2)	- adapt- ability (5) - mainten- ance of perform- ance (6)	- design & construction process (6) - building operations planning (7)	- location & trans- portation (1) - loadings on immediate surroundings (4)	
Total(102)	20	27	26	11	13	5	

* Source: Green Building Council of Korea (www.gbc-korea.co.kr)

Example Tools

- BREEAM and EcoHome UK
 - Building Research Establishment Environmental Assessment Method
 - · Credits awarded for a set of performance criteria
 - Management (of the building and the occupant organisation), health and comfort, energy, transport, water consumption, materials, land use, site ecology and pollution
 - A weighting system is applied to determine final rating
 - · Used as a reference in many countries

Example Tools

© LEED

- LEED Green Building Rating System
 - Leadership in Energy & Environmental Design
 - By US Green Building Council
 - Scores
 - · Sustainable sites
 - Water efficiency
 - · Energy and atmosphere
 - · Materials and resources
 - · Indoor environmental quality
 - + Innovation credits

Example Tools

- HK-BEAM
 - Hong Kong Building Environmental Assessment Method
 - Credits awarded for a set of performance criteria or issues
 - · Global issues & use of resources
 - Local issues
 - · Indoor issues
 - · Different versions:
 - Version 1/96R for new office designs, 2/96R for existing office buildings, 3/99 - for new residential buildings
 - · Hotel Building Environmental Assessment Scheme (HBEAS)
 - Trial version 4/03 New Building Developments
 - Trial version 5/03 Existing Building Developments

Example Tools

- · Latest development in Hong Kong
 - Comprehensive Environmental Performance Assessment Scheme for Buildings (CEPAS)
 - Under internal review by Buildings Department
 - A consultancy study is commissioned to develop this scheme (completed by end of 2003)

Practical Examples

Practical Examples

- Pennsylvania's First Green Building
 - Southcentral Regional Office Building, Department of Environmental Protection, Commonwealth of Pennsylvania, USA
 - Video: "Pennsylvania's First Green Building" [27 min.]
 - http://www.gggc.state.pa.us/building/scrob.html

How many Green Team Members in the video?

Practical Examples

- Pennsylvania's First Green Building green features:
 - Reuse of a brownfield site
 - · DOE-2 energy modelling for building system optimization
 - Building form, light shelves and sitting that reduces heat gain and augments daylighting
 - Gas-fried, CFC free adsorption air conditioning chiller
 - · Desiccant wheel dehumidifying
 - · High performance operable windows
 - High efficiency lighting and controls in concert with specially selected reflective surface
 - · Raised floor air plenum and building system distribution cavity
 - Ecologically sound building materials
 - · Interior air quality design control

Practical Examples

- Green Site Office North Tsing Yi
 - Green roof
 - Use of atrium & skylight
 - Reused components & recycled materials
 - Energy efficient lighting & envelope
 - Water conservation
 - Protect local trees

