IBTM6010J Lighting Engineering

http://ibse.hk/IBTM6010J/

Principles of Vision & Colour

Ir Dr. Sam C. M. Hui

E-mail: sam.cmhui@gmail.com

http://ibse.hk/cmhui/

Contents

Human vision

Design considerations

Colour theory

Colour vision

- Vision involves the nearly simultaneous interaction of the two eyes & the brain through a network of neurons, receptors, and other specialized cells
 - <u>Human stereo colour vision</u> is a very complex process that is not completely understood
 - Human visual system not only detects light & colour, but as an optical system, must be able to discern differences among objects, or an object & its background (contrast discrimination)

The earliest Arabic drawing of the structure of the eye

(Source: Principles of Vision https://www.ncbi.nlm.nih.gov/books/NBK11513/)

Normal human vision

- 1. Light enters the eye through the cornea
- 2. The light passes through the pupil. The iris controls the amount of light passing through
- 3. From there, it then hits the lens
- 4. Next, light passes through the vitreous humour
- 5. Finally, the light reaches the retina
- 6. The optic nerve carries the signals to the visual cortex of the brain & turns the signals into images

- Principle of VISION
 - Light energy → retina (photo-chemical) → optic
 nerve (electrical signal) → brain (sight centre)
 - Initial information: brightness + colour
 - Stereoscopic effect of two eyes (size & position)
 - The brain selects items in the *field of view*
 - The *sense of vision* depends on interpretations from previous experience

<u>F</u> —

- Characteristics/Regimes of <u>VISION</u>
 - Scotopic vision 暗視 in the dark by the rods
 - Luminance 10⁻⁶ to 10⁻² cd/m² (dark adapted, by rods)
 - Low ambient light; only see in shades of grey
 - Mesopic vision 暮視 between 10-2 and 10 cd/m²
 - Sense of brightness & colour; foval detection
 - *Photopic vision* 適光 above 10⁻² cd/m²
 - By cone mechanism (light adapted); in colour
 - High ambient light; enables details to be seen

Ranges of scotopic, mesopic and photopic visions

(Source: Advanced Lighting Guidelines 2001 and www.ecse.rpi.edu)

(Source: Advanced Lighting Guidelines 2001)

Scotopic & photopic curves of spectral luminous efficiency

- Purpose of vision
 - The primary goal of any lighting system is to provide a proper stimulus for the human visual system
- Processing of visual information
 - 1. Depth perception
 - 2. Motion detection
 - 3. Brightness perception
 - 4. Colour deficiencies in the visual system

- 1. Depth perception
 - Pictorial cues

- Relative image size due to distance or scale of known objects
- Interposition or layering
- Shadowing, perspective, or surface texture
- Motion parallax relative movement between any two objects at different distances
- Binocular cues
 - Eye convergence "cross-eyedness"
 - Binocular disparity or parallax "stereo" vision

- 2. Motion detection
 - Stroboscopic integration perceived motion from stills

- 3. Brightness perception*
 - Vision in darkness & lightness
 - Luminance is measurable quantity of light reflected from objects
 - Brightness is the perceived difference in light reflected from objects
 - Simultaneous <u>contrast</u> the perceived difference in brightness of two objects of the same luminance when viewed against different backgrounds
 - (* See also http://hyperphysics.phy-astr.gsu.edu/hbase/vision/bright.html)

Visual contrast – lack of contrast can reduce visibility

HIGH

Contrast is necessary for visibility

MEDIUM

Contrast is necessary for visibility

LOW

Contrast is necessary for visibility

CONTRAST CONTRAST

(Source: Advanced Lighting Guidelines 2001)

- 4. Colour deficiencies in the visual system
 - Inability to distinguish certain shades of colour under normal lighting conditions
 - The "cones" lack one or more light-sensitive pigments
 - Such as particular shades of reds & greens
- 色盲 · Colour-blindness deficiencies in or lack of cone sensitivity (affects males much more often than females)
 - 8% of males
 - 0.5% of females
 - Can range from mild to severe

Ishihara colour blindness test

Ishihara Colorblindness Test:

https://www.colorlitelens.com/ishihara-test

https://www.olympus-lifescience.com/en/microscope-resource/primer/java/humanvision/colorblindness/

(Source: https://www.olympus-lifescience.com/en/microscope-resource/primer/lightandcolor/humanvisionintro/)

- Measuring vision
 - <u>Visual acuity</u> measure of the smallest detail a person's visual system can resolve
 - Contrast sensitivity the ability to detect the presence of luminance differences
 - Contrast detection the contrast at which an object is just visible

Methods for measuring vision

Relationship between visual acuity and background luminance

(Source: https://www.ncbi.nlm.nih.gov/books/NBK11509/figure/ch25kallspatial.F18/)

Design considerations

- Task parameters affecting visual performance
 - Contrast (C) relationship between object and background luminances (L)
 - $C = (L_{task} L_{background}) / L_{background}$
 - <u>Size</u> visual angle subtended by an object from an observer
 - <u>Luminance</u> quantity and quality of light reflected from an object
 - <u>Time</u> viewing time necessary to process vision

Building design considerations

眩光 • Discomfort glare

- Luminance which causes visual discomfort
 - Source luminance, position, size, number of sources, field luminance

- Luminance which adversely affects visual performance
- Veiling reflections

Tasks viewed at a mirror angle to a source

Examples of glare and veiling reflection

Bright light entering from a window

Veiling reflection from overhead light source

It is critical that lamps and luminaires be selected to mitigate the problem of discomfort glare.

Design considerations

- Unified glare rating (UGR) 統一眩光指數
 - A method of calculating glare from luminaires, light through windows & bright light sources
 - Helps to determine how likely a luminaire is to cause discomfort to those around it
 - UGR values range from 40 (extremely high glare) to 5 (very low glare)
 - International standards e.g. EN12464 recommend maximum UGRs for different situations
 - UGR < 19 is recommended for many office & classroom settings

(Source: What is UGR? https://www.nvcuk.com/technical/what-is-ugr/529.htm)

How to calculate unified glare rating (UGR)

Luminance

of the luminous parts of each luminaire in the direction of the observer's eye

The solid angle

of each luminaire at the observer's eye

UGR =
$$8 \log_{10} \left(\frac{0.25}{L_B} \sum \frac{L^2 \omega}{p^2} \right)$$

Background luminance,

at the observers eye's

(Source: https://www.hidealite.com/en/knowledge/concept/ugr)

Each luminaires position from the line of sight of the observer

- Effects of aging
 - Increased lens opacity light scattering within the eye flare
 - Crystalline lens yellowing reduced blue vision
 - Presbyopia loss of lens elasticity and near vision
 - Reduced pupil size less light reaching retina more light required
 - Increased visual processing and adaptation time reduced performance
 - Decreased acuity and contrast sensitivity due to decreased nerve function

Requirement of light in relation to human age

(Source: https://www.researchgate.net/publication/268326391_Visibility_Estimation_of_Textile_Warning_Materials_in_the_Pedestrian-Vehicle Arrangement n Introduction/)

Colour theory

- Creation & perception of colour
- How colours are specified & quantified
- White light

All wavelengths combined at approximately equal

power levels

Colour theory

- The two types of receptor cells
 - Rods *scotopic vision*
 - Night and peripheral vision
 - See very low luminance levels
 - Surfaces appear as shades of gray or blue/gray difficult to distinguish between colours
 - Cones photopic vision
 - Responsible for colour vision at normal interior and exterior lighting levels
 - Colour experience determined by relative strength of the signal from each of three types of cones (R, G, B)

(Source: https://www.erco.com/en/guide/basics/physiology-of-the-eye-2225/)

- Photopic vs. scotopic sensitivity
 - Spectral luminous efficiency curve or the Vlambda curve
 - Peak sensitivity shifts to lower wavelengths under scotopic (rod) vision – Purkinje shift*
 - Surface colour that appears lighter under photopic vision may appear darker under scotopic

The eye's response to equal energy of radiation

- Photopic curve
 - Used to determine the nos. of lumens present in a light source, given the spectral power distribution for a lamp
 - Trade-off between colour rendering & efficacy
- Mesopic vision
 - Rods & cones are nearly equal in sensitivity
 - Both photopic & scotopic systems contribute to response to object colour of different luminance
 - Luminance level is low so that rods & cones function at similar sensitivities, e.g. twilight

Normalized Absorbance

Spectral sensitivity of rods and cones

(Source: Advanced Lighting Guidelines 2001)

- Perceived object colour (colour perception)*
 - Visual experience
 - Based on relative proportions of different wavelengths of light reflected from a surface
 - Function of both surface characteristics & illuminant
 - Defined using three designations
 - Hue, Value and Chrome
 - Using Munsell colour system

(* See also http://hyperphysics.phy-astr.gsu.edu/hbase/vision/colper.html)

Colour theory

Hue

- General description of the perceived colour of an object
- Single colour name or combination of two adjacent colour names (red, yellow, green, blue)

Value

- Indicates the relative lightness or darkness of a colour e.g. sky blue and navy blue
- Value is related to gray scale from black to white
- The value of a particular colour is the value of the gray that is of the same relative lightness

Chroma

- Indicates how saturated a colour appears
- Two colours may be of the same hue and value, but one more rich in hue e.g. a gray blue and a rich blue

Metameric match

- A condition where a different source/reflectance producing the same relative signal from the three types of cones will be perceived as being equal in colour
- (Note that it is possible that two materials which appear to match under one illuminant will not match under a second)

Hue, Value and Chrome in the Munsell colour system

(Source: http://www.huevaluechroma.com/011.php)

- Specification of colours*
 - Munsell colour system
 - Hue scale 5 principal hues (red, yellow, green, blue, and purple)
 - <u>Value scale</u> 10 equal visual steps from black to white
 - <u>Chrome scale</u> 6-14 equal steps from no colour (white, gray, or black) to the strongest chroma for that level
 - Colour discrimination functions
 - Hue discrimination (change in wavelength)
 - Saturation discrimination (degree of colour paleness)

(* See also http://hyperphysics.phy-astr.gsu.edu/hbase/vision/colsys.html)

Munsell colour system

- Colour vision processes:
 - 1. <u>Trichromatic input</u>: recorded by the responses of the cone cells in the retina
 - 2. Opponent output: responses from the cones are compared with each other
 - 3. Processing for colour constancy: information from throughout the visual field is rapidly, automatically & seemingly effortlessly analysed and resolved into an interpretation of object, lighting & atmospheric properties

Stage theory and model for normal human colour vision 565 445 545 Receptor Stage W H G B Neural Stage Blueness **Brightness** Greenness and and Yellowness Redness

(Source: https://www.ncbi.nlm.nih.gov/books/NBK11538/)

- Perceived colour of light source
 - Spectral content of emitted light determines source appearance
 - Two sources that appear to be the same colour may have different spectral compositions
 - Two sources that have the same colour appearance may have different colour rendering qualities

Low CRI

- Function of the surround
 - Simultaneous contrast
 - Appearance of a colour is affected
 by the colour against which it is viewed

- Colour adaptation
 - An after image, the compliment of the colour to which the visual system was adapted, appears over the region of the visual field that was exposed to that colour
- Colour preference
 - Colour fidelity, saturation, naturalness & vividness

Colour contrast: the circles have a different apparent brightness with a different coloured background

(Source: The Science of Lighting, Signify)

- Light source characteristics
 - Colour temperature
 - Colour rendering ability

12000K

7000K

4000K

3000K

2000K

- Correlated colour temperature (CCT)
 - Used to specify source appearance
 - CCT equates the appearance of a source to a blackbody radiator operating at the same temp.
 - Expressed using Kelvin temp. scale
 - A lower CCT means longer wavelengths and warmer colour
 - Typical light source 2,100 to 6,500 Kelvin

(* See also http://en.wikipedia.org/wiki/Color_temperature)

9000 K	Cool	Northlight/blue sky		
8500 K	Ā			
8000 K		Dark overcast sky		
7500 K		Dark Overcast sky		
7000 K				
6500 K		Noon sunlight on an overcast day		
6000 K		Shade in daylight		
5500 K		Noon sunlight on a clear day		
5000 K		Sunlight in late morning and early afternoon	Co	
4500 K		Sunlight in mid-morning and mid-afternoon	8	
4000 K		Sunlight in early morning and late afternoon		
3500 K				
		Dusk/dawn, high power halogen lamps		
3000 K		Tungsten-halogen (quartz) lamps		
		Standard incandescent lamps		
2500 K				
2000 K	V =	Sunlight at sunrise and sunset		
1500 K	Warm	Match/candle flame		
https://www.manufacturer.lighting/info/245/)				

olour temperature and appearance

(Source:

- Colour rendering index (CRI)
 - Used to evaluate light sources based on how well particular sample colours are rendered relative to a standard source at the same CCT
 - CRI index is a value from 0 to 100 that is a measure of the deviation in colour appearance that occurs when test colours are illuminated by the test source and the standard source
 - (A greater deviation results in a lower CRI value)

(* See also http://en.wikipedia.org/wiki/Color_rendering_index)

red-rich source

blue-rich source

Colour rendering index (CRI or Ra) of common lamp types

Lamp type	Ra
Incandescent	100
Fluorescent	
Colour / 33	65
Colour / 54	72
Colour / 82/ 83/ 84	86
Colour / 93/ 94/96	93
Low pressure sodium (SOX)	(- 44)
High pressure sodium (SON)	26
High pressure mercury (HPL – N)	45
Blended light (ML)	60
Metal Halide (HPI)	70

(Source: Philips Lighting, http://www.lighting.philips.co.in)

- Daylight and colour
 - Daylight has excellent colour rendering quality with a CRI of 100
 - Colour temperature is high cool or bluish-white
 - If electric light sources are used in a daylighted area, those of high colour temperature are

preferred

- Electric light sources
 - Colour quality & spectral power distribution (SPD)
 - <u>Incandescent</u> good colour rendering (halogen has a higher colour temperature)
 - Fluorescent range of colour temperature & colour rendering ability
 - <u>High intensity discharge (HID)</u> mercury, metal halide & high pressure sodium provide a range of colour temperature & colour rendering ability
 - <u>Light emitting diode (LED)</u> various colour temperatures & colour rendering ability

Spectral power distribution (SPD) of common light sources

(Source: https://www.paintingframesplus.com/painting-frames-plus-website-colors.php)

- CIE Chromaticity Coordinates*
 - The system used for the specification of CCT
 - Based on three coordinates (x, y, z)
 - CIE chromaticity diagram describes how colours can be mixed (trichromatic colour matches)
- Additive colour mixing
 - Primary colours Red, Green, Blue
 - Other colours of the spectrum are achieved by mixing the primaries
 - White light = equal concentration of the primaries

(* See also http://hyperphysics.phy-astr.gsu.edu/hbase/vision/ciecon.html)

Additive colour mixture

(Source: https://www.ncbi.nlm.nih.gov/books/NBK11538/)

- Subtractive colour mixing
 - Involves one source (broadband)
 - Selective reduction/elimination of certain wavelengths
 - Subtractive primaries Red, Blue, Yellow
 - Adding these three primaries results in no colour experience

Video: Color Vision 1: Color Basics (15:10) https://youtu.be/iDsrzKDB tA

Subtractive colour mixture

(Source: https://www.ncbi.nlm.nih.gov/books/NBK11538/)

- Principles of Vision
 https://www.ncbi.nlm.nih.gov/books/NBK11513/
- Color vision Wikipedia
 https://en.wikipedia.org/wiki/Color_vision
- Human Vision and Color Perception
 https://www.olympus-lifescience.com/en/microscope-resource/primer/lightandcolor/humanvisionintro/