MECH3023: Building Energy Management & Control Systems http://www.hku.hk/bse/mech3023/

Communication Protocols 通訊協議

Dr. Sam C M Hui Department of Mechanical Engineering The University of Hong Kong E-mail: cmhui@hku.hk

Mar 2010

Contents

- Basic Concepts
- Connectivity
- BACnet
- LonWorks
- The Future of BEMCS

- A "protocol" is a formal agreement (e.g. Kyoto Protocol and Montreal Protocol)
- A <u>Communications Protocol</u> is an agreement on how to exchange of information between intelligent devices such as PCs or controllers
- The OSI 7-layer model is commonly used to identify the structure of the agreement
 - P.S.: The OSI Model is not a protocol; compliance with it does not imply connectivity

- Data communication protocols
 - Sets of hardware and software rules, apply to:
 - Electrical signalling
 - Addressing
 - Network access (master/slave, peer-to-peer)
 - Error checking
 - Flow control
 - Message sequencing
 - Segmentation
 - Checkpointing
 - Presentation format (compression, encryption)
 - Message format

- The OSI 7-Layer model is ok for communications engineers, but a simpler, 3-layer model can be used to discuss BAS connectivity:
 - <u>*Physical*</u> : what media is used to connect the devices (i.e. twisted shielded pair, CAT-5 UTP structured cabling, coaxial cable, fiber optic cable)
 - <u>*Delivery*</u> : what standard is used to ensure messages are passed between devices (Ethernet, EIA232, EIA485, etc.)
 - <u>Information</u> : how is information represented (start/stop command, point value, etc.)

Examples of 3 layer model and an analogy to human communication

For two devices to exchange information, they must both use the same physical, delivery and information layer.

- It may not be necessary to insist that devices agree on all three layers. For example:
 - For devices to use a common structured cabling system, they need only agree on the physical layer; this will allow common patch panels, common connectors and a common wiring management system to be used for all devices
 - For devices to "piggyback" onto an office automation (OA) LAN using Ethernet TCP/IP, they need only agree on the physical and delivery layers; the routers and bridges of the OA LAN need not understand the info contained in the messages to get the messages from one location to another

- An "<u>Open Protocol</u>" is available to anybody, including competitors (only a few BAS vendors have such)
- A "<u>Restricted Protocol</u>" has the circulation controlled by a vendor (most BAS vendors have this)
- A "<u>Standard Protocol</u>" must first be an "Open Protocol" and, in addition, it must be used by a number of vendors (there are many competing "Standard Protocols" used in the BAS industry)

- Types of systems
 - Open systems
 - No secrecy; codes and configurations are disclosed
 - Closed systems
 - Protected by secrecy; are patented or copyrighted
 - Proprietary systems
 - Developed by a proprietor (holds legal right and exclusive title); the system may be open or closed
 - Non-proprietary systems
 - Do not have a proprietor; often developed by non-profit organisation and are open

Example of various types of HVAC DDC systems

Туре	Open	Closed
Proprietary	LonWorks	Various DDC manufacturers
Non-proprietary	BACnet	None known

- A BAS device can support only one protocol
- A BAS system can support a specific protocol in one of two ways:
 - *Native* : All devices in the system use this protocol. The protocol is used for all functions: (i.e. read, write, download, upload)
 - <u>*Gateway*</u> : Devices in the system do not use this protocol but a "protocol translator" is available. In this case, the specific protocol is typically only used for read and write but not upload or download

- BAS is a tool to assist in the management of the building. In today's environment, this means providing connectivity to a number of protocols.
 - 1. Existing vendor-specific protocols
 - 2. Competing "Standard" protocols
 - 3. Protocols from other industries
 - 4. Protocols from other BAS
- Which protocol is "native" to the BAS devices is irrelevant what is important is the list of protocols to which the BAS system can connect
 - Being locked into any one protocol is not a good idea

- <u>Myths regarding Protocols</u>:
 - Compliance with the OSI 7-layer model implies connectivity
 - Use of a standard LAN such as Ethernet TCP/IP implies connectivity
 - Having an "Open Protocol" implies connectivity (Question: how many vendor's equipment can be connected using this "Open Protocol"; is it a "Standard Protocol"?)
 - Which protocol is native to the BAS device is important (Correction: what is important is the list of protocols to which the BAS can connect)

Layers of a BAS

- Connectivity at each layer can be accomplished through one of two approaches:
 - "Native" standard
 - Gateway
- Each layer approaches connectivity differently because there are different objectives for connectivity at each layer and different technical / cost constraints at each layer

• Field Layer

- Includes DDC Controllers and factory-mounted controllers
- Responsible for connecting to sensors / actuators, equipment level interlocks and control loops
- Very large quantity installed in a building, so "pennies count"; network cost must be low
- Connectivity focus : integrating building equipment into BAS

- Automation Layer
 - Includes BAS System Controller
 - Responsible for historical data collection, supervisory control and BAS features
 - Small quantity installed in a building, so network cost is not critical
 - Connectivity focus : integrating other building systems into BAS

• Management Layer

- Includes PC based Operator Workstations
- Responsible for Graphical User Interface and Data Archiving
- Small quantity installed in a building, so network cost is not critical
- Connectivity focus : integrating other systems (i.e. office automation / factory automation) into BAS

- BACnet = Data communication protocol for Building Automation and Control Networks system
 - A standard protocol designed by consensus to allow devices from different vendors to exchange information

• BACnet

- Industry standard developed by ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) since 1987
 - Adopted in USA, Europe and many countries as the reference standard for BAS (e.g. ISO 16484-5)
- BACnet applications: HVAC, fire, lighting, security, lifts, utility company interface
- Use only layers 1, 2, 3 and 7 of the OSI model

BACnet infrastructure compared with the OSI model

0	SI Layers	BACnet Layers					
7	Application	BACnet Application					
3	Network	BACnet Network					
2	Data link	Ethernet	ARCNET	MS/TP	Point-to- point	IP	LonTalk
1	Physical	Ethernet	ARCNET	EIA- 485	EIA-232	Internet	LonTalk

MS/TP = Master/Slave Token Passing; IP = Internet Protocol

* EIA-485 is most often used for application specific controllers (low cost)

* EIA-232 and point-to-point is typically used for dial-up access through a modem LonTalk: commun. protocol for LonWorks network

How does BACnet work?

Internetworking

BACnet Application Layer

- Similar to OSI application layer
- Consists of 18 standard types "objects", 35 "services", and 6 events "algorithms"
 - BACnet Objects
 - Used to identify and access info from various devices
 - Abstract data structures that represent various aspects of the software, hardware, or an operation, e.g. an analogue input, analogue value, binary output, calendar, and schedule
 - BACnet Services
 - Provide commands and additional services for objects

BACnet Standard Objects

Analog Input Analog Output Analog Value **Binary Input Binary Output Binary Value** Calendar Command Device

Event Enrollment File Group Loop Multistate Input Multistate Output Program **Recipient** Table Schedule

Plus vendor specific objects

Analog Input Properties

Object Identifier	Object Type Present Val	
Description	Device Type	Status Flags
State	Out of Service Flag	Update Interval
Units	Minimum Value	Maximum Value
Resolution	Vendor Specific Property #1	Vendor Specific Property #n

Each vendor is free to extend the standard set of properties with additional vendor specific properties

BACnet Standard Services

- Alarm and Event Services
- File Access Services
- Object Access Services
- Remote Device Management Services
- Virtual Terminal Services

Private transfer services are available to provide vendor specific capabilities

BACnet Protocol Data Units

- Confirmed Request
- Simple Acknowledge
- Segment Acknowledge
- Reject

- Unconfirmed Request
- Complex Acknowledge
- Error
- Abort

BACnet Network Layer

- Similar to OSI network layer
- Provide the means by which a message can be routed from one BAcnet network to another
- BACnet Data Link Layer
 - Similar to OSI local data link layer
 - Relates to the packaging and data transfer within one specific network
 - It allows 5 LAN technologies: Ethernet (ISO 8802-3), ARCNET (ANSI 878-1), master/slave token passing (ANSI/ASHRAE 135), point-to-point (ANSI/ASHRAE 135), LonTalk (Echelon)

BACnet Physical Layer

- Similar to OSI physical layer
- Refer to the physical media (wiring) in which data are transferred
- Allows 6 LAN technologies:
 - Ethernet
 - ARCNET
 - EIA 485
 - EIA 232
 - Internet
 - LonTalk

- Advantages of using <u>Internet for BACnet</u> <u>systems</u>
 - Allows 2 or more remote networks to communicate simultaneously & operate together
 - More powerful & faster remote access
 - Real-time integral operation
 - User friendly (everyone is familiar with Internet browser)
- Caution with Internet: security issues & hackers!

• BACnet conformance classes

- BACnet defines standard Protocol Implementation Conformance Statement (PICS) to allow proper conformance by various manufacturers
- Has 6 levels of conformance
 - Class 1 : Receive "read value" message
 - Class 2 : Class 1 + receive "write value" message
 - Class 3 : Class 2 + receive "read/write attribute" message
 - Class 4 : Class 3 + send "read/write value" message + send "read/write attribute" message
 - Class 5 : Class 4 + receive "create/delete object" message
 - Class 6 : Class 5 + send "create/delete object" message

• Native BACnet

- A terminology adopted by BACnet manufacturers
- Those DDC systems in which every component is BACnet compatible at the device level
- 2 native BACnet devices can talk with minimal interface
- BACnet gateways
 - Gateways (= intelligent translator) as an interface between close proprietary systems and BACnet
 - Requires continuous maintenance; may create a bottleneck for info transfer

Interfacing old and new systems

- Further info about BACnet:
 - ASHRAE's BACnet committee (SSPC 135) <u>http://www.bacnet.org</u>
 - BACnet Tutorial Overview
 - BACnet/IP
 - BACnet: Answers to Frequently Asked Questions
 - Bibliography
 - BACnet International (BI) (formerly, BACnet Manufacturers Association)
 - http://www.bacnetassociation.org

- LonWorks is a family of hardware and software products developed by the Echelon Corporation (<u>www.echelon.com</u>)
 - LON = local operating network (designed to move short, event-driven, effective data)
 - LonTalk = open proprietary protocol for LonWorks; based on OSI 7-layer model
 - Provide the set of rules and methods for managing and exchanging messages between nodes and devices

LonWorks compatible devices must use transducer and Neuron chip from Echelon.

• LonWorks: Physical Layer

- The following options are supported:
 - Twisted pair
 - 1,250K baud (Transformer coupled Twisted Pair / Bus)
 - 78K baud (Twisted Pair/Free Topology)
 - Can supply up to 36.5 watts of DC power to devices
 - Supports bus / star / loop / combination topologies
 - 39K baud using standard EIA485 signaling
 - Power line carrier (10K, 5K or 2K baud)
 - Radio frequency (4.8K baud)

LonTalk: Delivery Layer

- Echelon proprietary; embedded in "Neuron" chip
- Peer-to-Peer communications
- Similar to Ethernet, except:
 - Lower cost implementation
 - Each device monitors network traffic level for advanced collision avoidance
 - Devices can be prioritized
 - Designed for real-time control networks rather than batch-oriented OA networks
 - Optimized for small messages (<66 bytes)

LonTalk protocol

- Designed specifically for control systems
 - Small packets (temp., pressure, status, etc, at about 12 bytes/packet) but can require hundreds or thousands of nodes and have the ability to send their packets within a very short time
 - [c.f.: data networks large data packets (kilobyte or megabyte packets) with a relatively small amount of simultaneous users]
- Date types, profiles, etc. reviewed by the LonMark Interoperability Association (ensure they are interoperable)

• <u>Neuron chip</u> 神經元芯片

 It is a microprocessor typically embedded in LonWorks products (to simplify the process for standardisation)

- A complete system programmed on a chip; contains Read-Only Memory (ROM), Random Access Memory (RAM), and the input/output interface ports and communications protocol
- "Neuron" = nerve cell body and all its process
- Includes 3 microprocessors or CPU:
 - <u>CPU-1</u>: media access control (MAC) processor (layers 1 & 2 of OSI 7-layer model)
 - <u>CPU-2</u>: network processor (layers 3 to 6 of OSI 7-layer model)
 - <u>CPU-3</u>: application processor (run codes written by the user and manufacturer)

LonWorks device components

LonWorks SNVTs

- SNVT = Standard Network Variable Type
- LonWorks controllers uses it to define data objects
- SNVT allows for implementation of multiple applications for multiple manufacturers and make it easier for interpretation
- LonWorks SCPTs
 - SCPT = Standard Configuration Parameter Type
 - Provide a standard for documenting network message formats
 - SCPTs are used to download configuration data e.g. set points, offsets, gains, etc. to the devices by the network management tools

• LonWorks Transceivers

- Transceiver = transmitter + receiver
- Means of communication between the LonWorks network and the Neuron Chip
- To interoperate properly, products must have compatible transceivers, otherwise, a router will be required

• LonWorks Routers

- Intelligent hardware that filter the passing of messages between two network segments
- Used to extend the length of a network or the number of nodes, and/or to change the media type
- Can be configured in 3 ways: 1) a learning router, 2) a configured router, 3) a repeater

• What is LonMark?

- A brand name and an association (formed in 1994), to promote and support those manufacturers that produce "<u>interoperable</u>" LonWorks products
 - Provide device-level assurance of interoperability through certification (LonMark logo)
 - Not all LonWorks products are LonMark certified
 - Different levels of how LonTalk is implemented
 - LonMark = Information Layer

- Further info about LonWorks:
 - Echelon LonWorks system <u>http://www.echelon.com</u>
 - Online LonWorks Demonstrations
 - Introduction to the LonWorks System (PDF)
 - LonMark Interoperability Association <u>http://www.lonmark.org</u>
 - LonMark Design Guidelines
 - LonMark Technical Corner

The Future of BEMCS

- What we have learned so far:
 - Hardware Components
 - System Architecture
 - Networking
 - Communication Protocols
- Hot topics/issues:
 - Interoperability
 - Open system interconnectivity (OSI)
 - Integrated networks

Futuristic underwear, programmed with artificial intelligence, will wash themselves as necessary.

Homework

- What would you like to have in the future?
 - Each student make a WISH
 - Send your wish description to me by email (cmhui@hku.hk)
- Wish List on BEMCS by Our Students
 - http://www.hku.hk/bse/mech3023/wishlist.htm

By the year 3000, you'll always have a cool place to sleep on hot summer nights.

In the future, even old games like chess will be designed to be more exciting.

Talking T-shirt (www.forbes.com)

Cooling jacket (www.forbes.com)

