Hardware Components in BAS/BEMS

(Part I - Sensors, Actuators, Controllers)

Contents

- Sensors and Actuators
 - Temperature, humidity, flow sensors
 - Valve, damper actuators

Controllers

• Pneumatic, electrical, electronic, DDC

DDC Controllers

- Elements, I/O, connections to external devices
- Sampling, A/D & D/A conversion
- Types of DDC controllers
- Six steps of DDC system design

Hardware Components in BAS/BEMS

Sensors

- Sensing devices
 - Temperature
 - Humidity/moisture
 - Pressure
 - Flow
 - Proof of operation (e.g. for safety interlock)
- Design factors: accuracy, reliability, repeatability, precision

Temperature sensors

- Temperature sensing elements can be
 - Bimetal strip
 - A rod-and-tube element
 - A sealed bellows
 - A sealed bellows attached to a capillary or bulb
 - A resistive wire
 - A thermistor or resistance temp. device (RTD)
 - Rapid response to temperature
 - A thermocouple
 - Wide range and rapid response

Fig. 51. Typical Remote-Bulb Element.

Moisture Sensors

- Moisture sensing elements
 - Mechanical expand and contract as the moisture level change ("hygroscopic"), e.g. nylon
 - Electronic change in either the resistance or capacitance of the element
 - Can be affected by temperature changes
 - Temperature compensation may be needed
 - A dew point sensor senses dew point directly or detects condensation on a cooled surface

Fig. 52. Typical Nylon Humidity Sensing Element.

Flow Sensors

Flow sensors

- Sense the rate of liquid and gas flow
 - Flow is difficult to sense accurately under all conditions
- Selecting the best flow-sensing technique for an application requires considering many aspects
 - Level of accuracy required
 - The medium being measured
 - The degree of variation in the measured flow

Fig. 53. Paddle Flow Sensor.

Flow Sensors

Selecting flow measuring devices

- What flow meters measure (volume/mass)
- Methodology of flow meters
 - Differential pressure
 - Magnetic
 - Turbine
 - Ultrasonic
- Selection criteria & considerations

Differential Pressure

Electromagnetic

Ultrasonic

Turbine

Transducers & Actuators

Transducers

 Convert (change) sensor inputs and controller outputs from one analogue form to another, more usable, analogue form, e.g. pressure-to-voltage

• Actuators

• A device that converts electric or pneumatic energy into a rotary or linear action, e.g. for valves and dampers (can be pneumatic or electrical controlled)

Fig. 54. Typical Pneumatic Valve Actuator.

Fig. 56. Typical Electric Damper Actuator.

Hardware Components in BAS/BEMS

>>> Controllers

Controllers

- 1) Pneumatic controllers
- 2) Electric controllers
- 3) Electronic controllers
- 4) Microprocessor-based/DDC

Basic pneumatic control system

You can hear the sound when the system is operating.

Typical compressed air supply system

Fig. 35. Momentary Push-button Start-Stop Circuit.

Simple electronic control system

Fig. 22. Typical Application with Electronic Controllers.

Fig. 3. Microprocessor Controller Configuration for Automatic Control Applications. Basic microprocessor/DDC controller

Select the right type of control for the application

Pneumatic	Electric	Electronic	Microprocessor
Naturally proportional	Most common for simple on-off	Precise control	Precise control
	control	Solid state	Inherent energy management
Requires clean dry air	Integral sensor/	repeatability and reliability	Inherent high order (proportional plus integral) control
cii	controller	Tonaomity	no undesirable offset
Air lines may cause	Cimula comunes of	Sensor may be up	Compatible with building more present out on the
freezing	control	controller	database for remote monitoring, adjusting, and alarming.
Explosion proof	Broad environmental limits	Simple, remote, rotary knob	Easily performs a complex sequence of control
Simple, powerful,		setpoint	Global (inter-loop), hierarchial control via
low cost, and reliable actuators	Complex modulating	High per-loop cost	communications bus (e.g., optimize chillers based upon demand of connected systems)
for large valves and	actuators,		
dampers	especially when	Complex actuators and controllers	Simple remote setpoint and display (absolute number, e.g., 74.4)
Simplest	opinig rotani		o.g., //
modulating control			Can use pneumatic actuators

Table 4. Characteristics and Attributes of Control Methods.

Hardware Components in BAS/BEMS

>>> Direct Digital Controller (DDC)

Elements of a DDC

- A DDC is essentially a <u>microcomputer</u> being <u>adapted</u> for the special purpose of programmed control of <u>control loops</u>.
- Hardware includes
 - Enclosure with power spike protection
 - Power supply for converting AC power supply to DC
 - CPU board
 - Input/Output (I/O) Card / Modules for signal conditioning, i.e. converting field signals to machine readable signals)
 - I/O termination board allowing field sensors and actuators to be connected to the I/O card
 - Battery backup
 - Communications networking

Architecture of a DDC unit

I/O of DDC

- Analog input (AI)
 - Proportional or variable input signals
 - Usually in 0-12VDC, 4-20mA, 0-1000 Ω signals
- Analog output (AO)
 - Proportional output signals from DDC to controlled devices
 - Usually in variable voltage or current
 - Other signal requirements (e.g. pneumatic pressure, pulse) will be converted by signal transducers
- Digital input (DI)
 - Contacts of circuit with low voltage
 - Making or breaking the contact provides a voltage signal to be picked up by the DDC
- Digital output (DO)
 - Contact enclosures providing a voltage to make or break a relay
- Universal points
 - Any combination of inputs and outputs can be brought into and out of the DDC without the need for specific 'analog' or 'digital' cards as I/O cards

Bring in flexibility for the users

[Source: Shadpour, F., 2001. The Fundamentals of HVAC Direct Digital Control]

Externally Connected Devices to DDC

- Uninterruptable power supply (UPS)
 - Considerations to be made to providing UPS for main computer and DDC units (and powered by essential power supply)
- Operator Machine Interface (OMI)
 - Human-machine or person-machine interface
 - A monitor and a keyboard or a personal computer that can retrieve data from the DDC as well as plugin program firmware into the DDC to change the specific functions of it
- Smart sensors and actuators
 - Contain intelligence & some form of control capability
 - May transmit/receive signal directly to/from the network

[Source: Shadpour, F., 2001. The Fundamentals of HVAC Direct Digital Control]

Importance of proper sampling

- DDCs perform calculations in digital format
- Sensors/actuators are, however, analogue
- Thus a A/D or D/A conversion is always required
- Since DDCs collect data in regular time intervals, the actual measured analogue data are sampled at a specific time and the data are 'reconstructed'
- The sampling speed is thus important for proper sensing and controlling

Guideline for sampling

- A signal contains frequency no more than fmax
- Minimum sampling frequency = $2 \times f_{max}$
- Common sampling frequency > 10 x f_{max}

A/D & D/A conversion

- A/D & D/A converters are usually in designed by a number of bit (e.g. 8-bit) → the full scale signal can be divided into 2⁸ - 1=255 segments
- E.g. a 10V voltage signal in a 8-bit A/D conversion, each bit will represent

$$\circ \frac{10V}{2^8 - 1} = 0.0392 \text{V}$$

• Error = $\frac{1}{2}$ of 1 bit = 0.0196V

- The representation of 1 bit of information is named 'resolution', thus
 - $R_{A/D} = \frac{\text{Measurement Band}}{2^{n-1}}$ (*n* = number of bits of the controller)
- More bits of the controller improves the precision
- This is similar for D/A conversions

•
$$R_{D/A} = \frac{\text{Output Band}}{2^{n}-1}$$

Exercise What is the number of bits required if the precision is to be better 0.1% error in an A/D conversion?

Solution

• Minimum resolution = $2 \times \text{error} = 0.2\%$

•
$$R_{A/D} = \frac{\text{Measurement Band}}{2^{n}-1}$$

• $0.002 = \frac{1}{2^{n}-1}$
• $n = 8.97$ (minimum 9 bits must be used)

Types of DDC controllers

Types

- 1. Application specific
- 2. General purpose
- 3. Programmable logic (for industrial process)

Selection factors to consider

- <u>Number of points being monitored & controlled</u>
- Locations of points being monitored & controlled
- <u>Application</u> of the system being monitored & controlled

Fan coil controller (application specific)

[Source: Shadpour, F., 2001. The Fundamentation

WAC Direct Digital Control]

DDC System Design

- Six steps of DDC system design
 - 1. System schematic
 - 2. Control point designations
 - 3. Point list
 - 4. DDC system architecture
 - 5. Sequence of operation
 - 6. Specifications
- * It is important to fully understand the design principle and designer's idea of the specified system

System schematic for a constant volume single zone AHU

Control point designations for a constant volume single zone AHU

		Point List			
Point	DO	DI	AI	AO	Remarks
Supply fan	1	1			
Return fan	1	1			
Duct tempera- ture sensors			3		
Chilled and hot water valves				2	
Room tempera- ture sensor			1		
Smoke detector		1			
Total	2	3	4	2	(total 11 points

[Source: Shadpour, F., 2001. The Fundamentals of HVAC Direct Digital Control]

1. DDC system architecture

- a. The DDC system consists of a local area network of seven DDC panels
- b. Provide the programming and operator machine interface (OMI) through a personal computer. Locate the OMI computer in the facility engineer's office.
- c. Display the following alarm conditions at the OMI computer:
 - Supply fan failure
 - Return fan failure
 - Room air temperature above 78° F or below 68° F designated (adjustable)
- 2. Air handling control
 - a. Operate supply fan SF-1 continuously at all times
 - b. Operate return fan RF-1 continuously at all times
 - c. Modulate chilled water and hot water valves in order to obtain optimum discharge temperature
 - d. Reset discharge temperature set point based upon room temperature in accordance with the following table statement:

Room Temperature (° F)	Discharge Temperature Set Point (° F)
65	85
85	55

Show on Drawings	Indicate in Specifications
Location of devices	Technical details Quality of components (standards) Functions to be carried out
Size of components	Material required
Quantity of components	Equipment schedule Workmanship

Exercise

- Draw a schematic diagram of a constant volume (CAV) single zone air handling system
- Identify the control point designations & type of signals
- Prepare a sequence of operations for this system
- What happens if FIRE happens in the room? What are the safety control actions?