Control Strategies and Applications (MECH3023)

Contents

- Energy Management Strategies
- Air Handling System Applications

Control Strategies and Applications

>>> Energy Management Strategies

Aims:

- Improve operating efficiency of equipment
- Reduce operating costs through
 - Flexible scheduling
 - Limiting operation
 - Altering set points
 - Utilizing natural or free cooling

- Reduce electrical consumption & demand
 - Energy (consumption) charge (\$ per kWh)
 - Demand charge (\$ per peak kW or kVA)

Typical energy management strategies:

- 1. Time of day scheduling
- 2. Optimum start/optimum stop
- 3. Duty cycling
- 4. Demand limiting
- 5. Temperature reset
- 6. Airside economizer

Time of Day (TOD) scheduling

- Turn off equipment when it is not needed
- Reduce operating hours of equipment
- Methods:
 - Time clocks (Timer)
 - Time of day programming, such as
 - Operating schedule: day, week, month or season
 - Holiday schedule

- Optimum start/optimum stop
 - Vary the scheduled start/stop times based upon current environmental conditions
 - Optimum start
 - Start *as late as possible* while ensuring comfort level
 - Variables: zone conditions, outdoor air, thermal mass
 - Optimum stop
 - Based on thermal time constant of a zone to *reduce/shut off system earlier* before unoccupied
 - Zones with large thermal capacities can be shut off earlier
 - Particularly useful when shutting down chiller plant and rely on old chilled water in the chiller to provide the remaining cooling
 - Considerations: loss of air movement & background noise may be disruptive

Time + Energy vs Comfort

Optimum start / Optimum stop

(Source: EMSD, 2002. Guidelines on Application of Central Control and Monitoring Systems)

Duty cycling

- Cycles equipment ON/OFF based on elapsed time
- To improve overall operating efficiency
- Two methods:
 - Based on time
 - A function of zone's temperature
- Drawbacks
 - Belt & bearing wear when aggressively scheduled
 - May generate noise in ductwork/pipework

Duty Cycle Application

(Source: EMSD, 2002. Guidelines on Application of Central Control and Monitoring Systems)

Demand limiting

- Cycle off or 'shedding' equipment to limit the peak electrical demand (e.g. for 'ratchet' demand charges apply)
- Loads are restored when the demand decreases
- Parameters:
 - Load's priority, minimum operation time, min. & max. off time
- Drawbacks
 - Periodic reductions in production or comfort

Demand Demand Demand Demand Interval 1 Interval 2 Interval 3 Interval 4

<u>Typical Power Curve Over Four</u> <u>Successive Demand Intervals</u>

(Source: EMSD, 2002. Guidelines on Application of Central Control and Monitoring Systems)

Temperature reset

- To reduce HVAC load & electrical consumption
- Example:
 - Reset of discharge/supply air temperature
 - Reset of chilled water set points
- Temp. in unoccupied zone is allowed to drift
- Other DDC software functions
 - Point trending: to analyse processes
 - Point commanding: override system status/values

<u>Supply Air Temperature Reset</u> (Single Duct VAV)

Note:

- (1) A to B: Mix Outdoor and Return Air.
- (2) B to C: 100% Outdoor Air
- (3) C to D: Economizer Cooling or

Enthalpy Control

Airside economizers

- Use outdoor air to help satisfy building cooling load (i.e. natural cooling or free cooling)
- Control of economizer cycle: by monitoring the enthalpy or temperature of outside air
 - When outside air enthalpy/temp. drops below the limit, the position of the outside/return air dampers is modulated to introduce more outdoor air
- Design issues: selection & placement of enthalpy sensors, humidity control, air duct size & air intake location

Control Strategies and Applications

>>> Air Handling Systems

Air Handling Systems

Reference:

- Honeywell, 1997. Engineering Manual of Automatic Control for Commercial Buildings – Heating, Ventilating, Air Conditioning, SI Edition., Honeywell, Inc., Minneapolis, MN, pp. 201–260.
 - Air Handling System Control Applications
 - Abbreviations and symbols
 - Requirements for Effective Control (general guidelines)
 - Different HVAC processes
 - ASHRAE Psychrometric Charts

(Students should print out the reference for discussion in class) http://customer.honeywell.com/techlit/pdf/77-0000s/77-1200.pdf

Air Handling Systems

Control processes selected for our study:

- Ventilation Control Processes
 - Fan System Start-Stop Control
 - Fixed Quantity of Outdoor Air Control
 - Mixed Air Control
 - Economizer Cycle Control (outdoor air dry bulb or enthalpy)
 - Mixed Air Control with Economizer Cycle
 - Economizer Cycle Control of Space Temperature with Supply Air Temperature Setpoint Reset
- Year-round System Control Process

Heating, Cooling, and Economizer

Air Handling Systems

- Typical format (see the document)
 - Functional description (w/ diagram)
 - Features
 - Conditions for successful operation
 - Limitations
 - Specifications
 - Psychrometric aspects

Fan System Start-Stop Control (page 209-210)

[Source: Honeywell, 1997. Engineering Manual of Automatic Control: for Commercial Buildings]

Fixed Quantity of Outdoor Air Control (page 211)

[Source: Honeywell, 1997. Engineering Manual of Automatic Control: for Commercial Buildings]

[Source: Honeywell, 1997. Engineering Manual of Automatic Control: for Commercial Buildings]

Economizer Cycle Control (Outdoor Air Dry Bulb) (page 215)

[Source: Honeywell, 1997. Engineering Manual of Automatic Control: for Commercial Buildings]

Economizer Cycle Control (Outdoor Air Enthalpy) (page 216)

[Source: Honeywell, 1997. Engineering Manual of Automatic Control: for Commercial Buildings]

[Source: Honeywell, 1997. Engineering Manual of Automatic Control: for Commercial Buildings]

Economizer Cycle Control (Outdoor Air/Return Air Enthalpy Comparison) (page 218-219)

[Source: Honeywell, 1997. Engineering Manual of Automatic Control: for Commercial Buildings]

Mixed Air Control with Economizer Cycle (page 220)

[Source: Honeywell, 1997. Engineering Manual of Automatic Control: for Commercial Buildings]

Economizer Cycle Control of Space Temperature with Supply Air Temperature Setpoint Reset (page 221)

Year-round System Control – Heating, Cooling, and Economizer (page 248)

[Source: Honeywell, 1997. Engineering Manual of Automatic Control: for Commercial Buildings]

Analysis of the climate conditions on a psychrometric chart

exercise

- Mixed air control with economizer cycle is applied to a HVAC system. If the mixed air (MA) consists of 25% outdoor air (OA) and 75% of return air (RA), determine the dry-bulb (DB) and relative humidity (RH) of the mixed air. OA condition is 32.5°C DB and 80% RH; RA condition is 25°C DB and 50% RH. (May 2009 exam paper)
- Further questions:
 - What if the economizer cycle adopts 'Outdoor Air Enthalpy Control', what is the suggested set point enthalpy to invoke this economizer cycle?
 - At what temperature when no more chilled water is required? What is the advantage of adopting 'Supply Air Temperature' reset?
 - From the psychrometric chart, what further findings can be observed?

