Design Summary 102LS Tsuen Wan Swimming Pool Complex

Swimming Pool Complex

Two separate buildings of five storeys with a GFA of 12,000 sq.m plus three swimming pools namely
(1) Indoor Heated Pool

- Standard+diving pool to FINA competition standard
- mechanical movable floor + pool divider (Submersible Boom)
- pool depth varies from 2 m to 5.6 m
- 1000 seat spectator stand + a curved roofing integrated with E\&M services design
(2) Outdoor Leisure Pool
- training pool + children paddling pool
(3) Teaching Pool

Contract period : Construction commenced in Nov.,94 and re-entry in April, 97
Completion contract resumed in Sept., 97 and project substantially completed in October,98

Filtration Plants

Filtration plant located at the basement with an area of 2,900 sq.m approximately with an extended pipe tunnel surrounding the main pool. Each of the three pools are served with independent filtration system which includes the following process

Process:

1. Sand Filter
2. Primary Disinfection - Ozonator
3. Reaction Tanks (2 min .)
4. Deozonisation (Carbon filter - 1.5 min .)
5. Secondary Disinfection - Sodium Hypochlorite $(\mathrm{NaOCl}) /$ Residual free chlorine $0.6 \mathrm{ppm}(0.55-0.65) \rightarrow 1 \mathrm{ppm} \mathrm{w} / \mathrm{o} \mathrm{O}_{3}$
6. Acid Dosing - pH control 7.3 (range 7.2-7.4)
7. Heat exchangers (For main pool only)

Main Equipment/key parameters:

	Main Pool	Leisure Pool	Teaching Pool	Remarks
Pool Volume	4750 cu.m	900 cu.m	270 cu.m	
Turnover Rate	4 hours	1.5 hours	2 hours	
Circulation Rate	1188 cu.m/hr.	$600 \mathrm{cu.m} / \mathrm{hr}$.	$135 \mathrm{cu.m} / \mathrm{hr}$.	
Circulation Pumps (cu.m/hr. x no.)	238 cu.m/hr. X 6	150 cu.m/hr. X 5	68 cu.m/hr. X 3	
Sand filter	$\begin{gathered} \text { dia. } 2.5 \mathrm{x} 8 \mathrm{Lx} 5 \\ 19.8 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { dia.2.5x6Lx4 } \\ 12.5 \mathrm{~m}^{\prime \prime} \end{gathered}$	$\begin{gathered} \text { dia. } 2.3 \times 2.3 \mathrm{Hx} 2 \\ 5.7 \mathrm{~m}^{\prime \prime} \end{gathered}$	12-16 m/hr/filter area
Ozonator	$690 \mathrm{~g} / \mathrm{hr} \mathrm{x} 2$	$410 \mathrm{~g} / \mathrm{hr} \mathrm{x} 2$	$130 \mathrm{~g} / \mathrm{hr} \mathrm{x} 2$	$1 \mathrm{ppm} / 1.15 \mathrm{ppm}($ mainP $)$ (max 1.2ppm)
Reaction Tank	$\begin{gathered} \text { dia. } 2.8 \mathrm{x} 8 \mathrm{Lx} 1 \\ 39.6 \mathrm{cu} . \mathrm{m} \\ \hline \end{gathered}$	$\begin{aligned} & \text { dia. } 2.8 \times 4.5 \mathrm{Lx} 1 \\ & 20 \mathrm{cu.m} \end{aligned}$	$\begin{gathered} \text { dia. } 2.8 \times 2 \mathrm{Hx} 1 \\ 4.5 \mathrm{cu} . \mathrm{m} \\ \hline \end{gathered}$	Rx Time $=2 \mathrm{~min}$.
Carbon Filter	$\begin{gathered} \hline \text { dia. } 2.8 \mathrm{x} 9 \mathrm{Lx} 2 \\ 18.8 \mathrm{cu} . \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { dia. } 2.8 \times 5 \mathrm{Lx} 2 \\ 9.9 \mathrm{cu.m} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { dia. } 2.8 \times 2 \mathrm{Hx} 2 \\ 4.5 \mathrm{cu.m} \\ \hline \end{gathered}$	Absorption Time 1.5 min .
Air Compressor	$1350 \mathrm{cu.m} / \mathrm{hr}$. X 2	$750 \mathrm{cu.m} / \mathrm{hr}$ X 2	345 cu.m/hr. x 2	Backwash:50m/hr/filter area sand filter - 7 min . carbon filter - 5 min
NaOCl Generator	Chlorine production Rate $5 \mathrm{~kg} / \mathrm{hr} \mathrm{x} 2$			

Electrical

Rating of Main \& Submain System :

Transformer	$: 1500 \mathrm{kVA} x$
Standby Generator	$: 250 \mathrm{kVA}$
General Lighting \& Power	$: 400 \mathrm{kVA}$
HVAC	$: 1000 \mathrm{kVA}$
Filtration Plant \& Hot Water	$: 1250 \mathrm{kVA}$
Boiler	

Other Electrical/Electronic Installation :
Scoreboard
Timing System
Underwater Sound System
Electric window and blind

HVAC

Capacity of Various Plants

Chillers	355 kW x 2	\rightarrow	(1) 710 kW	(1) cooling capacity $=1250 \mathrm{~kW}$
	180 kW x 3	\rightarrow	(1)540 kW	J
1				
Heat Pumps \{				
1	$\begin{aligned} & 213 \mathrm{~kW} \times 3=640 \\ & \mathrm{~kW} \end{aligned}$	\rightarrow	2440 kW	-2 Space Heating $=440 \mathrm{~kW}$
		\geq		
		$\dot{\text { i }}$	3200 kW	1
Solar Panels	2 m " x 168 nos.	\rightarrow	3 total area :330m"	¢3Pool Heating $\quad=800 \mathrm{~kW}+330 \mathrm{m"}$
Electric Boilers	300 kW x 2	\rightarrow	3600 kW	J

Brief Description on Heating and \mathbf{A} / \mathbf{C} systems

- Refrigeration plants with 2 air cooled chillers and 3 heat recovery chillers located at the roof floor of the outdoor pool building.
- All solar panels placed on a special suspended steel frame structure with an area of $14 \mathrm{~m} \times 48 \mathrm{~m}$ approximately at the indoor pool building.
- Other equipment associated with the solar system, electric boiler and the heat exchangers located in the basement plant room.
- The indoor swimming pool together with the spectator stand during competition events in summer attributes to the major cooling load demand of the refrigeration plant (chillers + heat pumps) among the other area in the indoor pool \& outdoor pool complex. At the same time, reheat at air handling units (provided by heat pumps) are always required for dehumidification of swimming pool hall so as to prevent condensation on glazing/mullions and to maintain a comfort condition for the swimmers.
- In winter time, the indoor pool will still be opened for the public. The pool water temperature would be maintained at a range of $26^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ via the three heat exchangers at the discretion of the operator.
- There are three sources for pool heating ; namely, (1) Electric Boilers; (2) Solar Panels ; and 3 The surplus recovered by the heat pumps after the demand on space heating is satisfied.
- The pool temperature is basically maintained by solar panels and heat pumps only in the normal operation whereas the electric boilers act as booster during the initial stage of operation and act as standby provision to the heat pumps and solar panel as well.

Mechanical Movable Floor \& Pool Divider

- Operates on Archimedes' principle - A body submerged in fluid, exerts a upward force = weight of fluid being displaced.
- Moved down by means of tensioned stainless steel cables, running thro' pulleys at pool bottom/pool deck to hydraulic actuators at pipe tunnel.
- Submersible boom - two separated sections for recreational/diving activities
- Submersible boom - stainless steel frame + GRP outer skin + buoyancy secured by PU foam block in GRP laminate / access via. removable grill by certified divers.
- lane rope 3 kN to 5 kN
- Tandem floor - Bearing capacity $65 \mathrm{~kg} / \mathrm{m}^{\prime \prime}, \sim 540$ adults/half pool (25 mx 25 m)
- Tandem floor - roller guide, two boom sections, extremities raised approx. 1m above water for cleaning.

