Checklist for Energy Efficiency in Buildings

(Note: P = planning; D = design; C = construction; M = maintenance and management.)

Item	Key points	Ρ	D	С	Μ
Siting and	• Thermal environment of surroundings	Х	Х		
surroundings	- sunshade, sunlight, wind, reflecting surfaces				
Thermal design of	• Effect of plants	Х	Х		
outdoor environment	- shading by trees and plants				
	- wind shielding by trees and plants				
	• Cooling effects by ponds and fountains	Х			Х
	• Reflection from road or floor surfaces and plants	X	X		
Shape of the building	• Ratio of envelope surface area to total floor area	Х	Х		
	- usually the smaller the better				
	• Aspect ratio of floor plan	Х	Х		
	- usually the smaller the better				
	• Number of floors and building height	X	X		
	- floor-to-floor height, light well's height				
Orientation of	• Desirable orientation from thermal viewpoint	Х			
facades	• Optimal strategy of orientation	X	X		
	- for the same floor plan, east-west axis is better than north-south one				
	- main wall openings to face south	X			
Design of building	• Zoning and location of air-conditioned and non-air-conditioned spaces	Х	Х		
plan and section to	- non-air-conditioned spaces and spaces without occupants may have				
enhance thermal	more exterior walls				
performance	- plant rooms to be placed on the topmost floor	v	v		
	• Appropriate provision for different building functions	Λ	Λ		
	- nours of using the space				
	- moving of neavy objects by occupants				
	- provision of store room				
	- provision of store room spaces with high internal loads (lights, people and equipment) may				
	compensate heat loss at the building envelope				
	• Use of transit areas for thermal buffer zones	Х	Х		
	Design of wind-shielded area under openings	Х	Х		
Thermal insulation	Design of white shereded area under openings Thermal insulation	x	x		
and thermal storage	- material selection				
of the roof	- thickness				
	- thermal properties (and moisture barrier)				
	• Construction of the roof	Х	Х	Х	
	- double slab				
	- thermal bridge prevention				
	• Treatment on the roof	Х	Х		Х
	- soil and planting				
	- drainage of rainwater				
	Sunshade provision	X	X		Х
	• Glare control	X	X		
	• Thermal storage	X	X		
	- heavy structure (thermal mass)				
	- interaction with thermal insulation	1			

1. Architecture (continued)

Item	Key points	Ρ	D	С	Μ
Thermal insulation	• Thermal insulation	Х	Х		
and thermal storage	- material selection				
of the exterior walls	- thickness				
	- thermal properties (and moisture barrier)				
	• Construction of the walls	Х	Х	Х	Х
	- use of air cavity				
	- ventilation of air cavity				
	- location of thermal insulation				
	- thermal bridge prevention				
	Sunshade provision	Х	Х		Х
	- louvres and shading devices				
	Reduce radiant heat	X	Х		Х
	- use of trees for shading and shielding				
	- select materials for glare control				
	- provision of ventilated cavity	l			
	• Thermal storage	X	Х		
	- heavy structure (thermal mass)				
	- interaction with thermal insulation				
Thermal insulation,	• Thermal insulation	Х	Х		
air tightness,	- Type and construction of window glass: plain glass, insulating glass,				
ventilation properties	reflective glass, tinted glass, double glazing, low-e glass, etc.				
and daylight	- window-to-wall ratio				
properties of	- shading coefficient				
windows and doors	- use of trees, sidewalls, louvres and balcony for shading				
	- use of internal shading devices like blinds and curtains				
	- orientation (south facing is preferable, and if in other directions, the				
	facing angle of window glass may be adjusted)				
	• Air tightness	Х	Х	Х	Х
	- air leakage properties				
	- shape and design of door openings: double door, automatic door and				
	rotating door				
	• Ventilation (natural)	X	Х		Х
	- possibility of windows being opened				
	- openings and path have less resistance to air flow				
	• Daylight penetration	X	Х		
	- reflective louvre				
	- skylight				
	- design of light wells				
	- light transmission properties of window glass				
	- array of window openings				
Glare control of	• Solar absorptivity, control of glare from sunlight and artificial lighting	Х	Х		
exterior and interior		İ			
walls					

2. Heating, Ventilating and Air-conditioning (HVAC)

Item Key points	F	Ρ	D	С	Μ
Overall planning • Suitable zoning strategy to prevent unnecessary	losses	X	Х		
- zoning of air-conditioned and non-air-conditioned	oned spaces				
- zoning for spaces with different air change rate	tes				
- zoning for spaces with different air-condition	ing hours				
• High efficient operation of system equipment	2	X	X		Х
• Zoning for spaces with different conditions: ten	nperature and humidity, $\int 2$	1	Λ		
lighting density, air cleanliness, occupant density	y and equipment used	x	v		
• Zoning for spaces with different load characteri	stics		11		
- peak nour, road lagging	Х	X	Х		Х
• Datatice of building all pressure					
• Sources of energy	У	X	Х		Х
- consider local energy structure and form of e	nergy available				
Indoor environment • Design indoor temperature and humidity		X	Х		Х
- setting of design conditions					
- use of thermal comfort index					
- reset conditions at night, before and after occu	upying hours				
- reset according to actual outdoor conditions					
- setting of control tolerance bands	_				
• Outdoor fresh air rate	2	X	Х		Х
- minimum outdoor air requirement					
- primary fresh air cooling	x	x	v		v
• Lighting power density	1	n.	Λ		Λ
- setting of design maintained illuminance	of air conditioning				x
• Changeover of heating and cooling, and period	of air-conditioning				
Distribution of air (and temperature)	Σ	X	Х		
- air supply method and location return air loc	ation				
System and • Reduce energy losses from inappropriate mixin		x	X		
equipment - setting of perimeter and interior zones	5				
- effective air supply method (avoid cooling an	d reheat)				
Matching of load characteristics	,				
- for design of cooling and heating plants	Σ	X	Х		
- heat recovery method					
 Correct use of multiplying factors 					
- safety factor of climatic conditions (in load ca	alculation), equipment	X	Х		
and systems; diversity factor					
• High efficient operation of equipment (by good	management)	X	Х		Х
- efficient part load operation					
- number and division of multiple equipment					
- use of thermal storage method	eratures				
Heat recovery from waste heat and exhaust air	X	X	Х		
- utilization of heat sources: exhaust air, transfe	ormers, motors, lighting,				
gas burning, warm discharged water	,				
• Use of heat pumps	Σ	X	Х		
• Total (and sensible) heat exchanger	У	X	Х		
• Waste heat and condensing boilers	2	X	Х		
• Use of natural energy sources	2	X	Х		Х
- primary fresh air unit to use night ventilation					
- solar thermal utilization					
- use of river or sea water for cooling		x	x		x
Thermal storage to cut down peak load and incr	rease efficiency of heat	•	- 1		11
recovery equipment					
- water or ice thermal storage					
- use of fatent fleat					
Cogeneration system					

2. Heating, Ventilating and Air-conditioning (HVAC) (continued)

Item	Key points	Ρ	D	С	Μ
Load distribution and	Prevent losses during transmission	Х	Х	Х	Х
transmission systems	- thermal insulation of piping and ducting				
	- minimize air leakage				
	- decrease local flow resistance				
	• Reduce space loads	Х	Х		Х
	- water-cooled lighting fixture (if needed)				
	- reduce energy losses from inappropriate mixing				
	- better control of latent loads				
	• Decrease of running power	Х	Х	Х	
	- use variable air volume (VAV) method				
	- use variable water volume flow (VWV) method				
	- use larger temperature difference				
	- use low-temperature air supply system				
	- use of booster fans and pumps				
	- fans and pumps specific to part load operation				
	- straightening and shortening of air ducts				
	- alternate energy transmission method				
	- close loop for water distribution systems				
	- lowering of water or air flow velocities				
	- better thermal insulation for pipes and ducts				
Ventilation systems	• Reduce transmission energy	X	Х	Х	Х
	- prevent excessive ventilation				
	- shut down ventilation when not needed				
	- control of ventilation rate at part load conditions				
	- use of localized ventilation method				
	- use of air-conditioning to replace high volume ventilation (e.g. for				
	transformer and plant rooms)				
	- utilization of natural ventilation				
	- use air cleaners				
	- multiple fans to handle a large flow capacity				
	• Reduce ventilation load	Х	Х		Х
	- decrease outside air when preheat or pre-cool is needed				
	- control of fresh air (from number of people or use CO_2 analysis)				
	- use of primary fresh air unit				
	- use of night ventilation				
	- use of total heat exchanger				
	- transfer of exhaust air from plant room to car park				
	- use of exhaust air from cooling tower				
	- decrease of ventilation rate during peak load				
Control systems	• Control of indoor environment (computer automatic control)	X	Х		Х
5	- setting of temperature and humidity control (response to outdoor)				
	- control of outdoor fresh air				
	• Control of the operation of equipment	Х	Х		Х
	- optimal start-stop				
	- capacity control on the number of equipment running				
	- control of water and air flow rates				
	- operation forecast control				
	- demand control				
	- peak-cutting control				
Use of natural energy	• solar energy	X	Х		
BJ	• geothermal energy	X	X		
	• wind energy	Х	Х		
	• use of energy in soil (temperature and underground water)	Х	Х		
Use of energy from	• host recovery from exhaust air	v	v		
waste heat and	heat recovery from whats are during				
exhaust	near recovery from waste products		A Y		
CAHAUSI	• heat recovery from discharged water	Λ	Λ		

3. Electrical Services

Item	Key points	Ρ	D	С	Μ
Overall planning	Reduce losses in electrical circuits	Х	Х	Х	Х
	- with a low voltage system, use a supply method with less losses				
	- consider to use high voltage supply				
	- shortening of electrical cable and wiring network				
	• Improvement of power factor	Х	Х		Х
	- use power factor correction equipment (demand or supply sides)				
	 Correct capacity and power ratings 	Х	Х		
	- correct use of multiplying factors				
	- control of a number of equipment				
	 Reduce power consumption of control equipment 	X	X		
	- use of instantaneous magnetic contactors	v	v		
	 Consider a total energy approach 	X	Х		
	- cogeneration, photovoltaics, reduction of harmonics				
Power transformation	• Location of the installations	Х	Х		
and distribution	- entry/connection point and the load centres				
	• Capacity	Х	Х		
	- relationship between average load factor and transformer efficiency				
	- number of equipment and division				
	 Transformer planning and design 	Х	X		
	- economic analysis and system zoning				
	- operation and distribution during no-load condition				
	• Electric voltage and wiring	X	Х		
	- study of economics and security	v	v		
	• Power distribution	X	X		
	- use of tree-type distribution				
	- raising of voltage	v	v		v
	• Group management (by computer automatic control)	Λ	Λ		Λ
	- control of the number of equipment in operation				
	- peak-cutting strategy				
	- demand control	x	x		x
	• Energy efficient equipment	Λ	Δ		Δ
	- check the economics and security				

4. Lighting Installations

ltem	Key points	Ρ	D	С	М
Lighting installations	• Design of illumination levels	Х	Х		
	 suitable zoning and appropriate level for each zone Lighting system general lighting and localized (task) lighting 	X	X	X	Х
	 direct and indirect lighting methods on-off method and circuitry design Lighting control (by computer methods) manual control occupant-sensing control lighting level sensing control 	x	х		х
	 Emergy-saving equipment (and their cleaning and maintenance) energy efficient lighting system and luminaires 	Х	Х		Х
	 Light-sensing control daylight-activated lighting control control system to maintain appropriate illumination level 	X	X		Х

5. Lifts and Escalators

Item	Key points	Ρ	D	С	Μ
Lifts and escalators	• Method and capacity suitable to meet the demand - traffic analysis (number of equipment waiting time, speed)	Х	Х		
	 reduce the number of equipment by centralized design correct combination of lifts and escalators 				
	- automatic stopping or standby mode of lifts and escalators				
	• Group management of equipment	X	Х		
	- "double-deck" lift system				
	- operation control				
	- lights automatic turn off when not in use				
	- escalators turn to standby when not in use				

6. Plumbing and Drainage

Item	Key points	P	D	С	Μ
Cold water supply	• Necessity of cold water supply	Х	Х		
and drainage	- selection of rooms and locations for cold water supply				
	 Load estimation and equipment capacity sizing 	X	Х		
	- correct and accurate loads				
	- suitable capacity (with safety and diversity factors)				
	Reduce pumping energy	X	Х	Х	
	- shortening of piping network and system				
	- open loop and close loop systems				
	- booster method				
	Maintenance of appropriate water pressure	X	X		
	• Equipment	X	Х	X	
	- energy-saving (water-saving) equipment and system				
	- correct type and size				
	Water recycling systems	X	Х		
	- feasibility of using them, their economics and reliability	N	37		
	Rainwater utilization	Х	Х		
Hot water supply	• Necessity of hot water supply	Х	Х		
	- selection of rooms and locations for hot water supply				
	• Conditions of hot water supply	Х	Х		Х
	- flow rate of hot water supply				
	- temperature of the hot water				
	• Hot water supply system	X	Х	Х	
	- design of storage tank or pond				
	- specific boiler				
	- central supply method and local supply method				
	- thermal insulation properties				
	- use of solar thermal energy				
	- shortening of water piping network				
	- heating method				
	- thermo-siphon for circulation		37		
	• Heat recovery from waste water	X	Х		

7. Building Management

Item	Key points	Ρ	D	С	Μ
Building	 Management of indoor environment 	Х			Х
management system	Management of equipment operation	Х			Х
	• Energy demand and consumption management	Х			Х
	• Preventive maintenance	Х			Х
	• Educational and training	Х			Х